@article{StadlerHofmannMotschmannetal., author = {Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail}, title = {Automated system for measuring the surface dilational modulus of liquid-air interfaces}, series = {Measurement Science and Technology}, volume = {27}, journal = {Measurement Science and Technology}, number = {6}, publisher = {IOP PUBLISHING}, doi = {10.1088/0957-0233/27/6/065301}, abstract = {The surface dilational modulus is a crucial parameter for describing the rheological properties of aqueous surfactant solutions. These properties are important for many technological processes. The present paper describes a fully automated instrument based on the oscillating bubble technique. It works in the frequency range from 1 Hz to 500 Hz, where surfactant exchange dynamics governs the relaxation process. The originality of instrument design is the consistent combination of modern measurement technologies with advanced imaging and signal processing algorithms. Key steps on the way to reliable and precise measurements are the excitation of harmonic oscillation of the bubble, phase sensitive evaluation of the pressure response, adjustment and maintenance of the bubble shape to half sphere geometry for compensation of thermal drifts, contour tracing of the bubbles video images, removal of noise and artefacts within the image for improving the reliability of the measurement, and, in particular, a complex trigger scheme for the measurement of the oscillation amplitude, which may vary with frequency as a result of resonances. The corresponding automation and programming tasks are described in detail. Various programming strategies, such as the use of MATLAB (R) software and native C++ code are discussed. An advance in the measurement technique is demonstrated by a fully automated measurement. The instrument has the potential to mature into a standard technique in the fields of colloid and interface chemistry and provides a significant extension of the frequency range to established competing techniques and state-of-the-art devices based on the same measurement principle.}, language = {en} } @article{StadlerHofmannMotschmannetal., author = {Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail}, title = {Automotived system for measuring the surface dilational modulus of liquid-air interfaces}, series = {Measurement Science and Technology}, volume = {27}, journal = {Measurement Science and Technology}, number = {6}, publisher = {IOP Science}, doi = {10.1088/0957-0233/27/6/065301}, pages = {065301}, abstract = {The surface dilational modulus is a crucial parameter for describing the rheological properties of aqueous surfactant solutions. These properties are important for many technological processes. The present paper describes a fully automated instrument based on the oscillating bubble technique. It works in the frequency range from 1 Hz to 500 Hz, where surfactant exchange dynamics governs the relaxation process. The originality of instrument design is the consistent combination of modern measurement technologies with advanced imaging and signal processing algorithms. Key steps on the way to reliable and precise measurements are the excitation of harmonic oscillation of the bubble, phase sensitive evaluation of the pressure response, adjustment and maintenance of the bubble shape to half sphere geometry for compensation of thermal drifts, contour tracing of the bubbles video images, removal of noise and artefacts within the image for improving the reliability of the measurement, and, in particular, a complex trigger scheme for the measurement of the oscillation amplitude, which may vary with frequency as a result of resonances. The corresponding automation and programming tasks are described in detail. Various programming strategies, such as the use of MATLAB® software and native C++ code are discussed. An advance in the measurement technique is demonstrated by a fully automated measurement. The instrument has the potential to mature into a standard technique in the fields of colloid and interface chemistry and provides a significant extension of the frequency range to established competing techniques and state-of-the-art devices based on the same measurement principle.}, language = {en} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} }