@article{KieningerZechMulzeretal., author = {Kieninger, Martin and Zech, Nina and Mulzer, Yvonne and Bele, Sylvia and Seemann, Milena and K{\"u}nzig, Holger and Schneiker, Andr{\´e} and Gruber, Michael Andreas}, title = {Optimierung von Blutgasanalysen auf der Intensivstation. Reduzierung pr{\"a}analytischer Fehler und Verbesserung der zeitlichen Abl{\"a}ufe}, series = {Anaesthesist}, volume = {64}, journal = {Anaesthesist}, number = {5}, publisher = {Springer Nature}, doi = {10.1007/s00101-015-0024-8}, pages = {365 -- 372}, abstract = {Kontinuierliche Bem{\"u}hungen zur Vermeidung pr{\"a}analytischer Fehler und zur Optimierung der zeitlichen Abl{\"a}ufe bei der Blutgasanalyse (BGA) sind wichtig. In einer prospektiven Beobachtungsstudie wurde untersucht, ob durch Einf{\"u}hrung neuer, mit einem Strichcode versehener Probennehmer und von Analysatoren mit automatisierter Verarbeitung der Proben, verglichen mit dem bisherigen Vorgehen, Vorteile resultieren. In einer jeweils 4-w{\"o}chigen Testphase wurde f{\"u}r das herk{\"o}mmliche BGA-System (Kontrollgruppe) und unter Verwendung der neuen, mit einem Strichcode versehenen Probennehmer und automatischer Prozessierung der Blutproben (Testgruppe) die Zeitdauer bis zum Vorliegen der Ergebnisse bei Durchf{\"u}hrung einer BGA gemessen. Zudem wurde die H{\"a}ufigkeit pr{\"a}analytischer Fehler quantifiziert. Schließlich wurde untersucht, ob eine Liegedauer der Probennehmer von 10 min vor Vermessung der Probe Auswirkungen auf die resultierenden Ergebnisse des Sauerstoff- (pO2) und des Kohlendioxidpartialdrucks (pCO2) hat. In der Kontrollgruppe zeigten sich h{\"a}ufig pr{\"a}analytische Fehler (Vernachl{\"a}ssigen des Entl{\"u}ftens der Probennehmer und der Homogenisierung mithilfe des manuellen Schwenkens vor Beginn des Messvorgangs). Bei Analyse von BGA-Proben mit einer zeitlichen Latenz von 10 min nach Abnahme wurden in der Kontrollgruppe signifikant erh{\"o}hte pO2-Werte [Mittelwert (MW) 118,4 mmHg bei Messung unmittelbar nach Abnahme, MW 148,6 mmHg bei Messung mit 10-min-Latenz] und signifikant erniedrigte pCO2-Werte (40,5 vs. 38,3 mmHg) gemessen. In der Testgruppe zeigten sich signifikant erh{\"o}hte pO2-Werte (115,3 vs. 123,7 mmHg); die pCO2-Werte waren hier unver{\"a}ndert. Ein Zeitgewinn bis zum Vorliegen der Messergebnisse ließ sich in der Testgruppe nicht feststellen. Die Umstellung auf mit einem Strichcode versehene Probennehmer und automatisierte Verarbeitung der Blutproben am Analysator war im klinischen Alltag problemlos m{\"o}glich. Ein Zeitgewinn bei der BGA resultierte nicht. Allerdings waren Vorteile im Hinblick auf die Reduzierung pr{\"a}analytischer Fehler erkennbar. Eine verz{\"o}gerte Analyse von Blutproben kann, abh{\"a}ngig vom Typ des Probennehmers, zu signifikanten und klinisch relevanten Ver{\"a}nderung der Messwerte von pO2 und pCO2 f{\"u}hren. Point of care testing with blood gas analysis (BGA) is an important factor for intensive care medicine. Continuous efforts to optimize workflow, improve safety for the staff and avoid preanalytical mistakes are important and should reflect quality management standards. In a prospective observational study it was investigated whether the implementation of a new system for BGA using labeled syringes and automated processing of the specimens leads to improvements compared to the previously used procedure. In a 4-week test period the time until receiving the final results of the BGA with the standard method used in the clinical routine (control group) was compared to the results in a second 4-week test period using the new labeled syringes and automated processing of the specimens (intervention group). In addition, preanalytical mistakes with both systems were checked during routine daily use. Finally, it was investigated whether a delay of 10 min between taking and analyzing the blood samples alters the results of the BGA. Preanalytical errors were frequently observed in the control group where non-deaerated samples were recorded in 87.3 \% but in the intervention group almost all samples (98.9 \%) were correctly deaerated. Insufficient homogenization due to omission of manual pivoting was seen in 83.2 \% in the control group and in 89.9 \% in the intervention group; however, in the intervention group the samples were homogenized automatically during the further analytical process. Although a survey among the staff revealed a high acceptance of the new system and a subjective improvement of workflow, a measurable gain in time after conversion to the new procedure could not be seen. The mean time needed for a complete analysis process until receiving the final results was 244 s in the intervention group and 201 s in the control group. A 10-min delay between taking and analyzing the blood samples led to a significant and clinically relevant elevation of the values for partial pressure of oxygen (pO(2)) in both groups compared to the results when analyzing the samples immediately (118.4 vs. 148.6 mmHg in the control group and 115.3 vs. 123.7 mmHg in the intervention group). When using standard syringes the partial pressure of carbon dioxide (pCO(2)) was significantly lower (40.5 vs. 38.3 mmHg) whereas no alterations were seen when using the labeled syringes. The implementation of a new BGA system with labeled syringes and automated processing of the specimens was possible without any difficulties under daily clinical routine conditions in this 10-bed intensive care unit (ICU). A gain of time could not be measured but a reduction in preanalytical errors using the labeled syringes with automated processing was found. Delayed analysis of blood samples can lead to significant changes in pO(2) and pCO(2) depending on the type of syringe used.}, language = {de} } @article{GoertlerGruber, author = {G{\"o}rtler, Michael and Gruber, Jennifer}, title = {Altersbedingte Diskriminierung von jungen Sozialarbeiterinnen im ASD? Begriffe und ausgew{\"a}hlte Ergebnisse einer empirischen Untersuchung}, series = {Bl{\"a}tter der Wohlfahrtspflege}, volume = {170}, journal = {Bl{\"a}tter der Wohlfahrtspflege}, number = {4}, publisher = {Nomos-Verlag}, address = {Baden-Baden}, issn = {0340-8574}, doi = {10.5771/0340-8574-2023-4}, pages = {144 -- 147}, abstract = {Ist Altersdiskriminierung nur ein Problem {\"A}lterer? Eine qualitative Studie hat sich die Situation von jungen Sozialarbeiterinnen im ASD einmal genauer angesehen und kommt zu interessanten Ergebnissen.}, language = {de} } @techreport{SteigerFoltanPhilippetal., type = {Working Paper}, author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and M{\"u}ller, Thomas and Gruber, Michael Andreas and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots—in particular, the presence of von Willebrand factor (vWF)—may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4′,6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} } @article{BirkenmaierDorniaLehleetal., author = {Birkenmaier, Clemens and Dornia, Christian and Lehle, Karla and M{\"u}ller, Thomas and Gruber, Michael Andreas and Philipp, Alois and Krenkel, Lars}, title = {Analysis of Thrombotic Deposits in Extracorporeal Membrane Oxygenators by High-resolution Microcomputed Tomography: A Feasibility Study}, series = {ASAIO Journal / American Society for Artificial Internal Organs}, volume = {66}, journal = {ASAIO Journal / American Society for Artificial Internal Organs}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, issn = {1538-943X}, doi = {10.1097/MAT.0000000000001089}, pages = {922 -- 928}, abstract = {Coagulative disorders, especially clotting during extracorporeal membrane oxygenation, are frequent complications. Direct visualization and analysis of deposits in membrane oxygenators using computed tomography (CT) may provide an insight into the underlying mechanisms causing thrombotic events. However, the already established multidetector CT1 (MDCT) method shows major limitations. Here, we demonstrate the feasibility of applying industrial micro-CT (μCT) to circumvent these restrictions. Three clinically used membrane oxygenators were investigated applying both MDCT and μCT. The scans were analyzed in terms of clot volume and local clot distribution. As validation, the clot volume was also determined from the fluid volume, which could be filled into the respective used oxygenator compared to a new device. In addition, cross-sectional CT images were compared with crosscut oxygenators. Based on the μCT findings, a morphological measure (sphericity) for assessing clot structures in membrane oxygenators is introduced. Furthermore, by comparing MDCT and μCT results, an augmentation of the MDCT method is proposed, which allows for improved clot volume determination in a clinical setting.}, language = {en} } @article{LingelHausPaschkeetal., author = {Lingel, Maximilian P. and Haus, Moritz and Paschke, Lukas and Foltan, Maik and Lubnow, Matthias and Gruber, Michael and Krenkel, Lars and Lehle, Karla}, title = {Clinical relevance of cell-free DNA during venovenous extracorporeal membrane oxygenation}, series = {Artificial organs}, volume = {47}, journal = {Artificial organs}, number = {11}, publisher = {Wiley}, issn = {1525-1594}, doi = {10.1111/aor.14616}, pages = {1720 -- 1731}, abstract = {BACKGROUND: Thrombosis remains a critical complication during venovenous extracorporeal membrane oxygenation (VV ECMO). The involvement of neutrophil extracellular traps (NETs) in thrombogenesis has to be discussed. The aim was to verify NETs in the form of cell-free DNA (cfDNA) in the plasma of patients during ECMO. METHODS: A fluorescent DNA-binding dye (QuantifFluor®, Promega) was used to detect cell-free DNA in plasma samples. cfDNA concentrations from volunteers (n = 21) and patients (n = 9) were compared and correlated with clinical/technical data before/during support, ECMO end and time of a system exchange. RESULTS: Before ECMO, patients with a median (IQR) age of 59 (51/63) years, SOFA score of 11 (10/15), and ECMO run time of 9.0 (7.0/19.5) days presented significantly higher levels of cfDNA compared to volunteers (6.4 (5.8/7.9) ng/μL vs. 5.9 (5.4/6.3) ng/μL; p = 0.044). Within 2 days after ECMO start, cfDNA, inflammatory, and hemolysis parameters remained unchanged, while platelets decreased (p = 0.005). After ECMO removal at the end of therapy, cfDNA, inflammation, and coagulation data (except antithrombin III) remained unchanged. The renewal of a system resulted in known alterations in fibrinogen, d-dimers, and platelets, while cfDNA remained unchanged. CONCLUSION: Detection of cfDNA in plasma of ECMO patients was not an indicator of acute and circuit-induced thrombogenesis.}, language = {en} } @article{SteigerFoltanPhilippetal., author = {Steiger, Tamara and Foltan, Maik and Philipp, Alois and Mueller, Thomas and Gruber, Michael Andreas and Bredthauer, Andre and Krenkel, Lars and Birkenmaier, Clemens and Lehle, Karla}, title = {Accumulations of von Willebrand factor within ECMO oxygenators: Potential indicator of coagulation abnormalities in critically ill patients?}, series = {Artificial Organs}, volume = {43}, journal = {Artificial Organs}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {1525-1594}, doi = {10.1111/aor.13513}, pages = {1065 -- 1076}, abstract = {Clot formation within membrane oxygenators (MOs) remains a critical problem during extracorporeal membrane oxygenation (ECMO). The composition of the clots-in particular, the presence of von Willebrand factor (vWF)-may be an indicator for prevalent nonphysiological flow conditions, foreign body reactions, or coagulation abnormalities in critically ill patients. Mats of interwoven gas exchange fibers from randomly collected MOs (PLS, Maquet, Rastatt, Germany) of 21 patients were stained with antibodies (anti-vWF and anti-P-selectin) and counterstained with 4 ',6-diamidino-2-phenylindole. The extent of vWF-loading was correlated with patient and technical data. While 12 MOs showed low vWF-loadings, 9 MOs showed high vWF-loading with highest accumulations close to crossing points of adjacent gas fibers. The presence and the extent of vWF-fibers/"cobwebs," leukocytes, platelet-leukocyte aggregates (PLAs), and P-selectin-positive platelet aggregates were independent of the extent of vWF-loading. However, the highly loaded MOs were obtained from patients with a significantly elevated SOFA score, severe thrombocytopenia, and persistent liver dysfunction. The coagulation abnormalities of these critically ill patients may cause an accumulation of the highly thrombogenic and elongated high-molecular-weight vWF multimers in the plasma which will be trapped in the MOs during the ECMO therapy.}, language = {en} }