@article{BrebantWeihererNoisseretal., author = {Br{\´e}bant, Vanessa and Weiherer, Maximilian and Noisser, Vivien and Seitz, Stephan and Prantl, Lukas and Eigenberger, Andreas}, title = {Implants Versus Lipograft: Analysis of Long-Term Results Following Congenital Breast Asymmetry Correction}, series = {Aesthetic Plastic Surgery}, volume = {46}, journal = {Aesthetic Plastic Surgery}, publisher = {Springer Nature}, doi = {10.1007/s00266-022-02843-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-32404}, pages = {2228 -- 2236}, abstract = {Aims Congenital breast asymmetry represents a particular challenge to the classic techniques of plastic surgery given the young age of patients at presentation. This study reviews and compares the long-term results of traditional breast augmentation using silicone implants and the more innovative technique of lipografting. Methods To achieve this, we not only captured subjective parameters such as satisfaction with outcome and symmetry, but also objective parameters including breast vol-ume and anthropometric measurements. The objective examination was performed manually and by using the Vectra H2 photogrammetry scanning system. Results Differences between patients undergoing either implant augmentation or lipograft were revealed not to be significant with respect to patient satisfaction with surgical outcome (p= 0.55) and symmetry (p= 0.69). Furthermore, a breast symmetry of 93 \% was reported in both groups. Likewise, no statistically significant volume difference between the left and right breasts was observed in both groups (p\0.41). However, lipograft patients needed on average 2.9 procedures to achieve the desired result, compared with 1.3 for implant augmentation. In contrast, patients treated with implant augmentation may require anumber of implant changes during their lifetime. Conclusion Both methods may be considered for patients presenting with congenital breast asymmetry.}, language = {en} } @article{WeihererEigenbergerEggeretal., author = {Weiherer, Maximilian and Eigenberger, Andreas and Egger, Bernhard and Br{\´e}bant, Vanessa and Prantl, Lukas and Palm, Christoph}, title = {Learning the shape of female breasts: an open-access 3D statistical shape model of the female breast built from 110 breast scans}, series = {The Visual Computer}, volume = {39}, journal = {The Visual Computer}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s00371-022-02431-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30506}, pages = {1597 -- 1616}, abstract = {We present the Regensburg Breast Shape Model (RBSM)—a 3D statistical shape model of the female breast built from 110 breast scans acquired in a standing position, and the first publicly available. Together with the model, a fully automated, pairwise surface registration pipeline used to establish dense correspondence among 3D breast scans is introduced. Our method is computationally efficient and requires only four landmarks to guide the registration process. A major challenge when modeling female breasts from surface-only 3D breast scans is the non-separability of breast and thorax. In order to weaken the strong coupling between breast and surrounding areas, we propose to minimize the variance outside the breast region as much as possible. To achieve this goal, a novel concept called breast probability masks (BPMs) is introduced. A BPM assigns probabilities to each point of a 3D breast scan, telling how likely it is that a particular point belongs to the breast area. During registration, we use BPMs to align the template to the target as accurately as possible inside the breast region and only roughly outside. This simple yet effective strategy significantly reduces the unwanted variance outside the breast region, leading to better statistical shape models in which breast shapes are quite well decoupled from the thorax. The RBSM is thus able to produce a variety of different breast shapes as independently as possible from the shape of the thorax. Our systematic experimental evaluation reveals a generalization ability of 0.17 mm and a specificity of 2.8 mm. To underline the expressiveness of the proposed model, we finally demonstrate in two showcase applications how the RBSM can be used for surgical outcome simulation and the prediction of a missing breast from the remaining one. Our model is available at https://www.rbsm.re-mic.de/.}, language = {en} }