@misc{MeinikheimMendelProbstetal., author = {Meinikheim, Michael and Mendel, Robert and Probst, Andreas and Scheppach, Markus W. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {Barrett-Ampel}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0042-1755109}, abstract = {Hintergrund Adenokarzinome des {\"O}sophagus sind bis heute mit einer infausten Prognose vergesellschaftet (1). Obwohl Endoskopiker mit Barrett-{\"O}sophagus als Pr{\"a}kanzerose konfrontiert werden, ist vor allem f{\"u}r nicht-Experten die Differenzierung zwischen Barrett-{\"O}sophagus ohne Dysplasie und assoziierten Neoplasien mitunter schwierig. Existierende Biopsieprotokolle (z.B. Seattle Protokoll) sind oftmals unzuverl{\"a}ssig (2). Eine fr{\"u}hzeitige Diagnose des Adenokarzinoms ist allerdings von fundamentaler Bedeutung f{\"u}r die Prognose des Patienten. Forschungsansatz Auf der Grundlage dieser Problematik, entwickelten wir in Kooperation mit dem Forschungslabor „Regensburg Medical Image Computing (ReMIC)" der OTH Regensburg ein auf k{\"u}nstlicher Intelligenz (KI) basiertes Entscheidungsunterst{\"u}tzungssystem (CDSS). Das auf einer DeepLabv3+ neuronalen Netzwerkarchitektur basierende CDSS differenziert mittels Mustererkennung Barrett- {\"O}sophagus ohne Dysplasie von Barrett-{\"O}sophagus mit Dysplasie bzw. Neoplasie („Klassifizierung"). Hierbei werden gemittelte Ausgabewahrscheinlichkeiten mit einem vom Benutzer definierten Schwellenwert verglichen. F{\"u}r Vorhersagen, die den Schwellenwert {\"u}berschreiten, berechnen wir die Kontur der Region und die Fl{\"a}che. Sobald die vorhergesagte L{\"a}sion eine bestimmte Gr{\"o}ße in der Eingabe {\"u}berschreitet, heben wir sie und ihren Umriss hervor. So erm{\"o}glicht eine farbkodierte Visualisierung eine Abgrenzung zwischen Dysplasie bzw. Neoplasie und normalem Barrett-Epithel („Segmentierung"). In einer Studie an Bildern in „Weißlicht" (WL) und „Narrow Band Imaging" (NBI) demonstrierten wir eine Sensitivit{\"a}t von mehr als 90\% und eine Spezifit{\"a}t von mehr als 80\% (3). In einem n{\"a}chsten Schritt, differenzierte unser KI-Algorithmus Barrett- Metaplasien von assoziierten Neoplasien anhand von zuf{\"a}llig abgegriffenen Bildern in Echtzeit mit einer Accuracy von 89.9\% (4). Darauf folgend, entwickelten wir unser System dahingehend weiter, dass unser Algorithmus nun auch dazu in der Lage ist, Untersuchungsvideos in WL, NBI und „Texture and Color Enhancement Imaging" (TXI) in Echtzeit zu analysieren (5). Aktuell f{\"u}hren wir eine Studie in einem randomisiert-kontrollierten Ansatz an unver{\"a}nderten Untersuchungsvideos in WL, NBI und TXI durch. Ausblick Um Patienten mit aus Barrett-Metaplasien resultierenden Neoplasien fr{\"u}hestm{\"o}glich an „High-Volume"-Zentren {\"u}berweisen zu k{\"o}nnen, soll unser KI-Algorithmus zuk{\"u}nftig vor allem Endoskopiker ohne extensive Erfahrung bei der Beurteilung von Barrett- {\"O}sophagus in der Krebsfr{\"u}herkennung unterst{\"u}tzen.}, subject = {Speiser{\"o}hrenkrebs}, language = {de} }