@article{EbigboMendelScheppachetal., author = {Ebigbo, Alanna and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Shahidi, Neal and Prinz, Friederike and Fleischmann, Carola and R{\"o}mmele, Christoph and G{\"o}lder, Stefan Karl and Braun, Georg and Rauber, David and R{\"u}ckert, Tobias and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm}, series = {Gut}, volume = {71}, journal = {Gut}, number = {12}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2021-326470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54293}, pages = {2388 -- 2390}, abstract = {In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63\% and 76\%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85\% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.}, language = {en} } @article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {641 -- 649}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} } @misc{EbigboRauberAyoubetal., author = {Ebigbo, Alanna and Rauber, David and Ayoub, Mousa and Birzle, Lisa and Matsumura, Tomoaki and Probst, Andreas and Steinbr{\"u}ck, Ingo and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Scheppach, Markus W. and Palm, Christoph and Messmann, Helmut}, title = {Early Esophageal Cancer and the Generalizability of Artificial Intelligence}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783775}, pages = {S428}, abstract = {Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett's neoplasia (Barrett's AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett's neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement") was the ground truth for evaluating AI performance. Results Barrett's AI detected early SCC with a mean intersection over reference (IoR) of 92\% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5\%, 10\%, and 20\% overlap with the expert-agreement, the IoR was 88\%, 85\% and 82\%, respectively. The mean Intersection Over Union (IoU) - a metric according to segmentation quality between the AI prediction and the expert-agreement - was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett's dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett's cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett's cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett's AI is less specific to Barrett's cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains.}, language = {en} } @misc{ScheppachMendelRauberetal., author = {Scheppach, Markus W. and Mendel, Robert and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial Intelligence (AI) improves endoscopists' vessel detection during endoscopic submucosal dissection (ESD)}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1782891}, pages = {S93}, abstract = {Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5\% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9\% to 73.0\% and from 59.0\% to 74.1\% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5\% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology.}, language = {en} } @misc{ScheppachNunesArizietal., author = {Scheppach, Markus W. and Nunes, Danilo Weber and Arizi, X. and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Procedural phase recognition in endoscopic submucosal dissection (ESD) using artificial intelligence (AI)}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783804}, pages = {S439}, abstract = {Aims Recent evidence suggests the possibility of intraprocedural phase recognition in surgical operations as well as endoscopic interventions such as peroral endoscopic myotomy and endoscopic submucosal dissection (ESD) by AI-algorithms. The intricate measurement of intraprocedural phase distribution may deepen the understanding of the procedure. Furthermore, real-time quality assessment as well as automation of reporting may become possible. Therefore, we aimed to develop an AI-algorithm for intraprocedural phase recognition during ESD. Methods A training dataset of 364385 single images from 9 full-length ESD videos was compiled. Each frame was classified into one procedural phase. Phases included scope manipulation, marking, injection, application of electrical current and bleeding. Allocation of each frame was only possible to one category. This training dataset was used to train a Video Swin transformer to recognize the phases. Temporal information was included via logarithmic frame sampling. Validation was performed using two separate ESD videos with 29801 single frames. Results The validation yielded sensitivities of 97.81\%, 97.83\%, 95.53\%, 85.01\% and 87.55\% for scope manipulation, marking, injection, electric application and bleeding, respectively. Specificities of 77.78\%, 90.91\%, 95.91\%, 93.65\% and 84.76\% were measured for the same parameters. Conclusions The developed algorithm was able to classify full-length ESD videos on a frame-by-frame basis into the predefined classes with high sensitivities and specificities. Future research will aim at the development of quality metrics based on single-operator phase distribution.}, language = {en} } @misc{ScheppachRauberStallhoferetal., author = {Scheppach, Markus W. and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765421}, pages = {S165}, abstract = {Aims VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into "easy" and "difficult". Results Internal validation showed 82\%, 85\% and 84\% for sensitivity, specificity and accuracy. External validation showed 90\%, 76\% and 84\%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for "difficult" images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in "easy" and "difficult" test images may indicate an advantage in macroscopically challenging cases.}, language = {en} } @misc{ScheppachWeberNunesArizietal., author = {Scheppach, Markus W. and Weber Nunes, Danilo and Arizi, X. and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Single frame workflow recognition during endoscopic submucosal dissection (ESD) using artificial intelligence (AI)}, series = {Endoscopy}, volume = {57}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0045-1806324}, pages = {S511}, abstract = {Aims Precise surgical phase recognition and evaluation may improve our understanding of complex endoscopic procedures. Furthermore, quality control measurements and endoscopy training could benefit from objective descriptions of surgical phase distributions. Therefore, we aimed to develop an artificial intelligence algorithm for frame-by-frame operational phase recognition during endoscopic submucosal dissection (ESD). Methods Full length ESD-videos from 31 patients comprising 6.297.782 single images were collected retrospectively. Videos were annotated on a frame-by-frame basis for the operational macro-phases diagnostics, marking, injection, dissection and bleeding. Further subphases were the application of electrical current, visible injection of fluid into the submucosal space and scope manipulation, leading to 11 phases in total. 4.975.699 frames (21 patients) were used for training of a video swin transformer using uniform frame sampling for temporal information. Hyperparameter tuning was performed with 897.325 further frames (6 patients), while 424.758 frames (4 patients) were used for validation. Results The overall F1 scores on the test dataset for the macro-phases and all 11 phases were 0.96 and 0.90, respectively. The recall values for diagnostics, marking, injection, dissection and bleeding were 1.00, 1.00, 0.95, 0.96 and 0.93, respectively. Conclusions The algorithm classified operational phases during ESD with high accuracy. A precise evaluation of phase distribution may allow for the development of objective quality metrics for quality control and training.}, language = {en} } @misc{RoserMeinikheimMendeletal., author = {Roser, David and Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fernandez-Esparrach, G. and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett's esophagus}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Georg Thieme Verlag}, issn = {1438-8812}, doi = {10.1055/s-0044-1782859}, pages = {79}, abstract = {Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett's esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6\% to 75.5\%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3\% vs. 75.5\%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8\% to 71.8\% and 67.5\% to 67.1\%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment.}, language = {en} } @article{RoserMeinikheimMuzalyovaetal., author = {Roser, David and Meinikheim, Michael and Muzalyova, Anna and Mendel, Robert and Palm, Christoph and Probst, Andreas and Nagl, Sandra and Scheppach, Markus W. and R{\"o}mmele, Christoph and Schnoy, Elisabeth and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial intelligence-assisted endoscopy and examiner confidence : a study on human-artificial intelligence interaction in Barrett's Esophagus (With Video)}, series = {DEN Open}, volume = {6}, journal = {DEN Open}, number = {1}, publisher = {Wiley}, doi = {10.1002/deo2.70150}, pages = {8}, abstract = {Objective Despite high stand-alone performance, studies demonstrate that artificial intelligence (AI)-supported endoscopic diagnostics often fall short in clinical applications due to human-AI interaction factors. This video-based trial on Barrett's esophagus aimed to investigate how examiner behavior, their levels of confidence, and system usability influence the diagnostic outcomes of AI-assisted endoscopy. Methods The present analysis employed data from a multicenter randomized controlled tandem video trial involving 22 endoscopists with varying degrees of expertise. Participants were tasked with evaluating a set of 96 endoscopic videos of Barrett's esophagus in two distinct rounds, with and without AI assistance. Diagnostic confidence levels were recorded, and decision changes were categorized according to the AI prediction. Additional surveys assessed user experience and system usability ratings. Results AI assistance significantly increased examiner confidence levels (p < 0.001) and accuracy. Withdrawing AI assistance decreased confidence (p < 0.001), but not accuracy. Experts consistently reported higher confidence than non-experts (p < 0.001), regardless of performance. Despite improved confidence, correct AI guidance was disregarded in 16\% of all cases, and 9\% of initially correct diagnoses were changed to incorrect ones. Overreliance on AI, algorithm aversion, and uncertainty in AI predictions were identified as key factors influencing outcomes. The System Usability Scale questionnaire scores indicated good to excellent usability, with non-experts scoring 73.5 and experts 85.6. Conclusions Our findings highlight the pivotal function of examiner behavior in AI-assisted endoscopy. To fully realize the benefits of AI, implementing explainable AI, improving user interfaces, and providing targeted training are essential. Addressing these factors could enhance diagnostic accuracy and confidence in clinical practice.}, language = {en} } @article{ScheppachRauberStallhoferetal., author = {Scheppach, Markus W. and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Stallmach, Andreas and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm}, series = {Gastrointestinal Endoscopy}, journal = {Gastrointestinal Endoscopy}, publisher = {Elsevier}, doi = {10.1016/j.gie.2023.01.006}, abstract = {Background and aims Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance. Methods A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm's result during the test. From their consultation distribution, a stratification of test images into "easy" and "difficult" was performed and used for classified performance measurement. Results External validation of the AI algorithm yielded values of 90 \%, 76 \%, and 84 \% for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 \%, 72 \% and 67 \%, while the corresponding values in experts were 72 \%, 69 \% and 71 \%, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for "difficult" images, the performance of the AI algorithm was stable. Conclusion In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on "difficult" images suggests a further positive add-on effect in challenging cases.}, language = {en} }