@inproceedings{HerdlBachmannWohlfartsstaetteretal., author = {Herdl, Florian and Bachmann, Michael and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Dudeck, Markus and Eder, Magdalena and Meyer, Manuel and Pahlke, Andreas and Edler, Simon and Schels, Andreas and Hansch, Walter and Schreiner, Rupert and Wohlfartsstatter, Dominik and Dusberg, Felix}, title = {A novel current dependent field emission performance test}, series = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, booktitle = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, doi = {10.1109/IVNC52431.2021.9600695}, pages = {1 -- 2}, abstract = {A current dependent performance test for comparison of different field emitter arrays is introduced. Statistical analysis is enabled due to a short measurement time and as a main feature the electric field shift, comparable to the degradation of the emitter is examined. Significance of the test method is shown by a comparison of field emitter arrays with different doping levels.}, language = {en} } @article{SchelsEdlerHerdletal., author = {Schels, Andreas and Edler, Simon and Herdl, Florian and Hansch, Walter and Bachmann, Michael and Ritter, Daniela and Dudeck, Markus and Duesberg, Felix and Meyer, Manuel and Pahlke, Andreas and Hausladen, Matthias and Buchner, Philipp and Schreiner, Rupert}, title = {In situ quantitative field emission imaging using a low-cost CMOS imaging sensor}, series = {Journal of Vacuum Science \& Technology B}, volume = {40}, journal = {Journal of Vacuum Science \& Technology B}, number = {1}, publisher = {AIP Publishing}, doi = {10.1116/6.0001551}, abstract = {Spatially resolved field emission measurements represent an important factor in further development of existing field emitter concepts. In this work, we present a novel approach that allows quantitative analysis of individual emission spots from integral current-voltage measurements using a low-cost and commercially available CMOS camera. By combining different exposure times to extrapolate oversaturated and underexposed pixels, a near congruence of integral current and image brightness is shown. The extrapolation also allows parallel investigation of all individual tips participating in the total current with currents ranging from a few nanoampere to one microampere per tip. The sensitivity, which is determined by the integral brightness-to-current ratio, remains unchanged within the measurement accuracy even after ten full measurement cycles. Using a point detection algorithm, the proportional current load of each individual tip of the field emitter array is analyzed and compared at different times during the initial measurement cycle. Together with the extracted I-V curves of single emission spots from the integral measurement, the results indicate the effect of premature burnout of particularly sharp tips during conditioning of the emitter.}, language = {en} } @article{EdlerSchelsHerdletal., author = {Edler, Simon and Schels, Andreas and Herdl, Florian and Hansch, Walter and Bachmann, Michael and Dudeck, Markus and Duesberg, Felix and Pahlke, Andreas and Hausladen, Matthias and Buchner Philipp, and Schreiner, Rupert}, title = {Origin of the current saturation level of p-doped silicon field emitters}, series = {Journal of Vacuum Science \& Technology B}, volume = {40}, journal = {Journal of Vacuum Science \& Technology B}, number = {1}, publisher = {AIP Publishing}, doi = {10.1116/6.0001554}, abstract = {Using p-type semiconductors for field emitters is one simple way to realize an integrated current limiter to improve the lifetime of the cathode. In this work, the origin of the current saturation of p-type silicon emitters is investigated in detail. Single emitters are electrically characterized and compared to simulation results. With a simulation model considering a high surface generation rate and elevated tip temperature, a good agreement to the measured data is found. This observation is supported further by alteration of the surface experimentally. Electrical measurements after different treatments in hydrofluoric acid as well as heated and subsequent operation at room temperature are well explained by the influence of surface generation. Furthermore, it is shown that the field penetration leads to a small voltage drop and a strong geometry-dependent reduction of the field enhancement factor.}, language = {en} }