@article{SouzaJrPassosSantanaetal., author = {Souza Jr., Luis Antonio de and Passos, Leandro A. and Santana, Marcos Cleison S. and Mendel, Robert and Rauber, David and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Papa, Jo{\~a}o Paulo and Palm, Christoph}, title = {Layer-selective deep representation to improve esophageal cancer classification}, series = {Medical \& Biological Engineering \& Computing}, volume = {62}, journal = {Medical \& Biological Engineering \& Computing}, publisher = {Springer Nature}, address = {Heidelberg}, doi = {10.1007/s11517-024-03142-8}, pages = {3355 -- 3372}, abstract = {Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis.For this task, the deep learning techniques' black-box nature must somehow be lightened up to clarify its promising results. Hence, we aim to investigate the impact of the ResNet-50 deep convolutional design for Barrett's esophagus and adenocarcinoma classification. For such a task, and aiming at proposing a two-step learning technique, the output of each convolutional layer that composes the ResNet-50 architecture was trained and classified for further definition of layers that would provide more impact in the architecture. We showed that local information and high-dimensional features are essential to improve the classification for our task. Besides, we observed a significant improvement when the most discriminative layers expressed more impact in the training and classification of ResNet-50 for Barrett's esophagus and adenocarcinoma classification, demonstrating that both human knowledge and computational processing may influence the correct learning of such a problem.}, language = {en} } @article{SouzaJrPachecoPassosetal., author = {Souza Jr., Luis Antonio de and Pacheco, Andr{\´e} G.C. and Passos, Leandro A. and Santana, Marcos Cleison S. and Mendel, Robert and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Palm, Christoph and Papa, Jo{\~a}o Paulo}, title = {DeepCraftFuse: visual and deeply-learnable features work better together for esophageal cancer detection in patients with Barrett's esophagus}, series = {Neural Computing and Applications}, volume = {36}, journal = {Neural Computing and Applications}, publisher = {Springer}, address = {London}, doi = {10.1007/s00521-024-09615-z}, pages = {10445 -- 10459}, abstract = {Limitations in computer-assisted diagnosis include lack of labeled data and inability to model the relation between what experts see and what computers learn. Even though artificial intelligence and machine learning have demonstrated remarkable performances in medical image computing, their accountability and transparency level must be improved to transfer this success into clinical practice. The reliability of machine learning decisions must be explained and interpreted, especially for supporting the medical diagnosis. While deep learning techniques are broad so that unseen information might help learn patterns of interest, human insights to describe objects of interest help in decision-making. This paper proposes a novel approach, DeepCraftFuse, to address the challenge of combining information provided by deep networks with visual-based features to significantly enhance the correct identification of cancerous tissues in patients affected with Barrett's esophagus (BE). We demonstrate that DeepCraftFuse outperforms state-of-the-art techniques on private and public datasets, reaching results of around 95\% when distinguishing patients affected by BE that is either positive or negative to esophageal cancer.}, subject = {Deep Learning}, language = {en} }