@inproceedings{SwidergalWagnerLubsederetal., author = {Swidergal, Krzysztof and Wagner, Marcus and Lubseder, C. and von Wurmb, I. and Meinhardt, J. and Marburg, S.}, title = {Investigation of the forming tool dynamics by means of numerical simulation}, series = {Advanced Metal Forming Processes in Automotive Industry, AutoMetForm 2016}, booktitle = {Advanced Metal Forming Processes in Automotive Industry, AutoMetForm 2016}, publisher = {Fraunhofer}, pages = {335 -- 340}, abstract = {In the forming tools for pressing car body parts, heavy blankholders are used to prevent buckling and wrinkling of the blank. During each press cycle, those large masses need to be lifted, raising thereby the structural dynamic load on the forming tool and on the press. Therefore a detailed knowledge about the forming tool dynamics is essential for an accurate and robust design of forming tools. In this paper, a dynamic finite element method (FEM) simulation of selected automotive forming tool is presented enabling identification of regions of critical stresses. For validation of the simulation results, the kinematic responses of the tool's components are compared with the measurements obtained in an experiment.}, language = {en} }