@article{MuellerIdenDuennweberGorlatchetal., author = {M{\"u}ller-Iden, Jens and D{\"u}nnweber, Jan and Gorlatch, Sergei and Alt, Martin and Fujita, Hamido and Funyu, Yutaka}, title = {Clayworks: Toward user-oriented software for collaborative modeling}, series = {Knowledge-Based Systems}, volume = {22}, journal = {Knowledge-Based Systems}, number = {3}, publisher = {Elsevier}, address = {Oxford, UK}, doi = {10.1016/j.knosys.2008.12.001}, pages = {209 -- 215}, abstract = {We consider the development of software systems that integrate collaborative real-time modeling and distributed computing. Our main goal is user-orientation: we need a collaborative workspace for geographically dispersed users with a seamless access of every user to high-performance servers. This paper presents a particular prototype, Clayworks, that allows modeling of virtual clay objects and running computation-intensive deformation simulations for objects crashing into each other. In order to integrate heterogeneous computational resources, we adopt modern Grid middleware and provide the users with an intuitive graphical interface. Simulations are parallelized using a higher-order component (HOC) which abstracts over the web service resource framework (WSRF) used to interconnect our worksuite to the computation server. Clayworks is a representative of a large class of demanding systems which combine collaborative, user-oriented modeling with performance-critical computations, e.g., crash-tests or simulations of biological population evolution.}, language = {en} } @inproceedings{MuellerAltDuennweberetal., author = {M{\"u}ller, Jens and Alt, Martin and D{\"u}nnweber, Jan and Gorlatch, Sergei}, title = {Clayworks}, series = {IEEE International Conference on e-Science and Grid Computing (e-Science'06), 2nd, 4-6 Dec 2006, Amsterdam, Netherlands}, booktitle = {IEEE International Conference on e-Science and Grid Computing (e-Science'06), 2nd, 4-6 Dec 2006, Amsterdam, Netherlands}, isbn = {0-7695-2734-5}, doi = {10.1109/E-SCIENCE.2006.261188}, abstract = {Clayworks is a software system which integrates collaborative real-time modeling and distributed computing. It addresses the challenge of developing a collaborative workspace with a seamless access to high-performance servers. Clayworks allows modeling of virtual clay objects and running computation-intensive deformation simulations for objects crashing into each other. To integrate heterogeneous computational resources, we adopted modern Grid middleware and provided the users with an intuitive graphical interface. We parallelized the computation of simulations using a Higher-Order Component (HOC) which abstracts over the Globus Web service resource framework (WSRF) used to interconnect our worksuite to the computation server. Clayworks is a representative of a large class of demanding systems which combine collaborative modeling with performance-critical computations, e.g., crash-tests or simulations for biological population evolution.}, language = {en} } @article{WolfgrammAbbSampetal., author = {Wolfgramm, Alex and Abb, Valerius and Samp, Artur and Samp, Rafal and Hoffmann, Jens Christoph and M{\"u}ller, Rainer and Kammler, Martin}, title = {Structural and functional evolution of HKUST-1 nanoparticles induced by ball milling}, series = {Next Materials}, volume = {10}, journal = {Next Materials}, publisher = {Elsevier}, doi = {10.1016/j.nxmate.2025.101544}, pages = {7}, abstract = {In this study, the effect of post-synthetic ball milling on the structural and functional properties of as-synthesized nanoparticles of the copper-based metal-organic framework (MOF) HKUST-1 was investigated for the first time. Nanoparticles were synthesized using sodium formate as a capping agent. The crystalline particles were subjected to a controlled ball milling process, which induced significant structural changes. Powder X-ray diffraction (PXRD) revealed a reduction in crystallite size from 91 nm to 21 nm and the introduction of microstrain, partially disrupting the MOF's long-range crystalline order, as evidenced by peak broadening and the diminished intensity of high-angle reflections. Particle morphology pre- and post-milling was further studied with scanning electron microscopy (SEM) imaging, verifying a narrow particle size distribution of ± 22 nm after milling. Fourier-transform infrared spectroscopy (FTIR) indicated protonation of carboxylate groups in the larger pores of the framework, likely due to moisture incorporation during milling. Brunauer-Emmett-Teller (BET) surface area analysis showed a substantial decrease in specific surface area from 521 m²/g to 226 m²/g, suggesting a partial collapse of the porous framework. We discuss the applicability of ball milling as a versatile means of post-synthetic approach to reduce MOF particle sizes, a key element in the preparation of MOF-based thin films using inks or polymers.}, language = {en} }