@misc{SternerSchumm, author = {Sterner, Michael and Schumm, Leon}, title = {Netzpuffer - Speicher \& Kraftwerke als virtuelle Leitungen f{\"u}r mehr Versorgungssicherheit und EE-Integration in Nord und S{\"u}d}, series = {7. Smart-Grid-Fachtagung WAGO, Hannover, 29. Sept. 2021}, journal = {7. Smart-Grid-Fachtagung WAGO, Hannover, 29. Sept. 2021}, language = {de} } @techreport{SternerSchummRanketal., author = {Sterner, Michael and Schumm, Leon and Rank, Daniel and Hofrichter, Andreas}, title = {Intelligente Netzpuffer : Abschlussbericht (24.01.2021)}, language = {de} } @unpublished{SchummAbdelKhalekBrownetal., author = {Schumm, Leon and Abdel-Khalek, Hazem and Brown, Tom and Ueckerdt, Falko and Sterner, Michael and Fioriti, Davide and Parzen, Max}, title = {The impact of temporal hydrogen regulation on hydrogen exporters and their domestic energy transition}, publisher = {Research Square Platform LLC}, doi = {10.21203/rs.3.rs-4285425/v1}, abstract = {As global demand for green hydrogen rises, potential hydrogen exporters move into the spotlight. However, the large-scale installation of on-grid hydrogen electrolysis for export can have profound impacts on domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports, domestic energy transition and temporal hydrogen regulation, employing a sector-coupled energy model in Morocco. We find substantial co-benets of domestic climate change mitigation and hydrogen exports, whereby exports can reduce domestic electricity prices while mitigation reduces hydrogen export prices. However, increasing hydrogen exports quickly in a system that is still dominated by fossil fuels can substantially raise domestic electricity prices, if green hydrogen production is not regulated. Surprisingly, temporal matching of hydrogen production lowers domestic electricity cost by up to 31\% while the effect on exporters is minimal. This policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms, hydrogen importers, and domestic electricity consumers and hereby increases acceptance among actors.}, language = {en} } @article{SchummBrownAbdelKhaleketal., author = {Schumm, Leon and Brown, Tom and Abdel-Khalek, Hazem and Ueckerdt, Falko and Sterner, Michael and Fioriti, David and Parzen, Max}, title = {The impact of temporal hydrogen regulation on hydrogen exporters and their domestic energy transition}, series = {Nature Communications}, volume = {16}, journal = {Nature Communications}, publisher = {Nature}, address = {London}, doi = {10.1038/s41467-025-62873-w}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-84857}, pages = {13}, abstract = {As global demand for green hydrogen rises, potential hydrogen exporters move into the spotlight. While exports can bring countries revenue, large-scale on-grid hydrogen electrolysis for export can profoundly impact domestic energy prices and energy-related emissions. Our investigation explores the interplay of hydrogen exports, domestic energy transition and temporal hydrogen regulation, employing a sector-coupled energy model in Morocco. We find substantial co-benefits of domestic carbon dioxide mitigation and hydrogen exports, whereby exports can reduce market-based costs for domestic electricity consumers while mitigation reduces costs for hydrogen exporters. However, increasing hydrogen exports in a fossil-dominated system can substantially raise market-based costs for domestic electricity consumers, but surprisingly, temporal matching of hydrogen production can lower these costs by up to 31\% with minimal impact on exporters. Here, we show that this policy instrument can steer the welfare (re-)distribution between hydrogen exporting firms, hydrogen importers, and domestic electricity consumers and hereby increases acceptance among actors.}, language = {en} } @inproceedings{SchamelAchhammerSchummetal., author = {Schamel, Marco and Achhammer, Anton and Schumm, Leon and Sterner, Michael}, title = {Harvesting Sustainability: Cost-competitiveness of Green Fertilizer Value Chains in Western Africa}, series = {Proceedings of the 2025 IEEE PES/IAS PowerAfrica Conference (PAC 2025): pioneering sustainable energy solutions for Africa's Future, 28.09-02.10 2025, Cairo, Egypt}, booktitle = {Proceedings of the 2025 IEEE PES/IAS PowerAfrica Conference (PAC 2025): pioneering sustainable energy solutions for Africa's Future, 28.09-02.10 2025, Cairo, Egypt}, publisher = {IEEE}, isbn = {979-8-3315-9850-1}, doi = {10.1109/PowerAfrica65840.2025.11289137}, pages = {6}, abstract = {The use of nitrogen fertilizers in Sub-Saharan Africa is low compared to other regions of the world, leading to inadequate crop yields. Furthermore, conventional production from fossil fuel-based ammonia is highly emissions-intensive, making decarbonization urgent. Local production using green hydrogen, sourced solely from solar energy, water, and air, could address both agricultural and climate challenges. This study focuses on Ghana, where nitrogen inputs are among the lowest globally. Using an open-source framework, we evaluate high-resolution production costs for sustainable ammonia and examine two decarbonized pathways: aqueous ammonia and urea. It is found that cost estimates with current assumptions mostly exceed historical prices. However, given their resilience to global market disruptions and expected future cost decreases of the technologies used, these sustainable approaches represent a promising pathway for development in Sub-Saharan Africa.}, language = {en} } @article{SchummHaasPeeretal., author = {Schumm, Leon and Haas, Jannik and Peer, Rebecca and Sterner, Michael}, title = {The role of hydrogen offtaker regulation in highly renewable electricity systems}, series = {Energy}, volume = {342}, journal = {Energy}, publisher = {Elsevier}, doi = {10.1016/j.energy.2025.139513}, pages = {13}, abstract = {The growing demand for green hydrogen necessitates a rapid scale-up of production and exports to meet decarbonization targets globally. However, current ramp-up efforts remain insufficient, calling for policies that unlock the potential of hydrogen as a low-carbon energy carrier. A key lever is the offtaker regulation, which impacts the pace and sustainability of export projects. This study investigates minimum renewable share requirements for hydrogen exports in countries with high renewable electricity shares. Using New Zealand as a case study, we develop a fully sector-coupled capacity expansion and dispatch model, integrating hydrogen and electricity network planning based on PyPSA-Earth. The model optimizes New Zealand's energy system under varying export scenarios, renewable electricity shares, and resulting system impacts. We find that domestic electricity demand and renewable expansion rates dominate long-term outcomes, while progressive regulation enables short-term hydrogen and Power-to-X exports. Relaxing the renewable threshold from 80\% to 60\% triples export volumes from 2.5 TWh to 8.2 TWh by 2030. We propose a two-stage requirement: an initially progressive threshold to attract investment with low consequential emissions, followed by stricter regulation to prevent high emissions, rising domestic electricity prices, and declining hydrogen competitiveness. This framework, demonstrated for New Zealand, can guide hydrogen-exporting countries worldwide.}, language = {en} } @misc{RahimSchumm, author = {Rahim, Stefan and Schumm, Leon}, title = {Weather Data Cutouts for the Wasserstoffatlas (Hydrogen Map) [Data set]}, doi = {10.5281/zenodo.8135586}, abstract = {The cutouts are required to calculate the solar PV and wind onshore feed-in profiles of the Wasserstoffatlas. The provided cutouts are spatiotemporal subsets of the European weather data from the ECMWF ERA5 reanalysis dataset and the CMSAF SARAH-2 solar surface radiation dataset for the year 2013. They have been prepared by and are for use with the atlite tool (https://atlite.readthedocs.io/). ECMWF ERA5 Source: https://cds.climate.copernicus.eu/cdsapp\#!/dataset/reanalysis-era5-single-levels?tab=overview Terms of Use: https://cds.climate.copernicus.eu/api/v2/terms/static/20180314_Copernicus_License_V1.1.pdf CMSAF SARAH-2 Pfeifroth, Uwe; Kothe, Steffen; M{\"u}ller, Richard; Trentmann, J{\"o}rg; Hollmann, Rainer; Fuchs, Petra; Werscheck, Martin (2017): Surface Radiation Data Set - Heliosat (SARAH) - Edition 2, Satellite Application Facility on Climate Monitoring, DOI:10.5676/EUM_SAF_CM/SARAH/V002, https://doi.org/10.5676/EUM_SAF_CM/SARAH/V002 Terms of Use: https://www.eumetsat.int/cs/idcplg?IdcService=GET_FILE\&dDocName=pdf_leg_data_policy\&allowInterrupt=1\&noSaveAs=1\&RevisionSelectionMethod=LatestReleased}, language = {en} } @misc{BirettSchummHofrichteretal., author = {Birett, Falk and Schumm, Leon and Hofrichter, Andreas and Heusgen, Valentin and Rahim, Stefan}, title = {Wasserstoffatlas Deutschland (Hydrogen Map) [Data set]}, doi = {10.5281/zenodo.13960465}, abstract = {Input files required for Hydrogen Map workflow in the project "Wasserstoffatlas Deutschland", funded by the BMBF.}, language = {en} }