@article{MaiwaldKrothGeigeretal., author = {Maiwald, Frederik and Kroth, Lea and Geiger, Ren{\´e} and Schmitt, Bernhard and Hierl, Stefan and Schmidt, Michael}, title = {Laser welding of polymer foils with spatially adapted intensity distributions}, series = {Joining Plastics}, journal = {Joining Plastics}, number = {1}, publisher = {DVS Media}, address = {D{\"u}sseldorf}, issn = {1864-3450}, doi = {10.53192/JP20250146}, pages = {46 -- 52}, abstract = {Absorber-free laser transmission welding is characterized by its contactless energy input and geometricflexibility and enables the precise and clean joining of polymer films without absorbing additives or adhesives. It is therefore well suited for applications with high demands regarding process reliability and cleanliness such as packaging, fluid containersor as sealing film in medicaland food industry. A homogeneous weld seam temperature is necessary for a large processwindow. In this work, the naturally Gaussian-shaped intensity distributionof the laser beam is there foreconverted into a donut-shaped and a flat-top-shaped distribution. When using the donut-shape, the processwindow for welding polypropylene or polyethylene films is increased by up to a factor of 3. At the same time, the weld seam strength almost corresponds to the strength of the base material.}, subject = {Laserschweissen}, language = {en} } @inproceedings{MaiwaldKrothLaskinetal., author = {Maiwald, Frederik and Kroth, Lea and Laskin, Alexander and Hierl, Stefan and Schmidt, Michael}, title = {Enlarging the process window in absorber-free laser transmission welding of polymer foils using tailored laser intensity distribution}, series = {Procedia CIRP}, volume = {124}, booktitle = {Procedia CIRP}, publisher = {Elsevier}, doi = {10.1016/j.procir.2024.08.159}, pages = {489 -- 493}, abstract = {Absorber-free laser transmission welding enables precise and clean joining of polymer foils without absorbent additives or adhesives. It is well suited for applications in medical technology and food industry, which impose high demands on process reliability. To achieve a large process window and thus a reliable process, a homogeneous weld seam temperature is desirable. For this purpose, the intensity distribution of the laser beam is adapted locally by refractive beam shaping optics. Using a donut-shaped intensity distribution, the weld seam temperature is homogenized. Thus, the process window for welding polypropylene or polyethylene foils is enlarged up to a factor of 4 compared to a conventional, Gaussian-shaped distribution. This enables the reliable welding of even 85 µm thin foils, which could only be welded to a limited extent with a conventional laser intensity distribution.}, language = {en} }