@inproceedings{SindersbergerPremMonkmanetal.2021, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Self-Sensing Electroadhesive Polymer Gripper with Magnetically Controllable Surface Geometry}, series = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, booktitle = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, editor = {Schlaak, Helmut}, publisher = {VDE VERLAG}, address = {Berlin; Offenbach}, isbn = {9783800754540}, doi = {10.1002/macp.201800222}, pages = {318 -- 320}, year = {2021}, abstract = {Compared to conventional end effectors, electro-adhesive grippers enable the handling of sensitive, soft or air-permeable materials [1]. The prehension force is based on a strong electric field generated by electrodes resulting in a polarisation of the dielectric and the generation of mirror charges in the workpiece. When the electrode supply voltage is deactivated, the electric field drops,but an electrostatic field remains due to remanent polarisation of the dielectric. The residual charge on the gripper surface reduces only slowly and in combination with other influencing factors can prevent the workpieces from being ejected temporarily or completely. In this work a solution to this problem is presented by means of gripper surface deforming caused by the applicat ion of a magnetic field to a magneto- active polymer (MAP) actuator. The in-creased distance between the workpiece and the dielectric enables precise and controlled ejection. In addition to compliance and deformability, the employment of soft smart materials enables the integration of self-sens-ing mechanisms for the measurement of surface deformation. The embedding of electrically conductive flexible electrodes within the soft silicone dielectric sup port such movements and serves as the n ecessary electrodes for electroadhesion. Since the implementation of the end effectoris based entirely on soft materials, the self-sensing magnetically controllable electroadhesive gripper (SMEG) can be produced in a shape deposition manufacturing (SDM) process [2], [3] and is highly applicable to the field of soft robotics.}, language = {de} } @article{ChavezZiolkowskiSchorretal., author = {Chavez, Jhohan and Ziolkowski, Marek and Schorr, Philipp and Spiess, Lothar and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {A method to approach constant isotropic permeabilities and demagnetization factors of magneto-rheological elastomers}, series = {Journal of Magnetism and Magnetic Materials}, volume = {527}, journal = {Journal of Magnetism and Magnetic Materials}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2021.167742}, abstract = {The use of non-conventional materials is nowadays of much interest in scientific community. Magneto-rheological elastomers are hybrid materials, which in presence of magnetic fields state a change in their mechanical properties. They are composed by an elastomeric matrix with embedded magnetic particles. One of the most attractive features of these materials is that as soon as the magnetic field is removed from the material, the original mechanical properties are completely recovered, with negligible differences in comparison to the original state. This paper focuses on the study of magnetic characteristics of these smart materials, such as relative permeability and demagnetizing factors, for samples with different volume concentration of ferromagnetic particles.}, language = {en} } @inproceedings{BoehmSchorrSchaleetal., author = {B{\"o}hm, Valter and Schorr, Philipp and Schale, Florian and Kaufhold, Tobias and Zentner, Lena and Zimmermann, Klaus}, title = {Worm-Like Mobile Robot Based on a Tensegrity Structure}, series = {2021 IEEE 4th International Conference on Soft Robotics (RoboSoft): 2.04.2021 - 16.04.2021, New Haven, CT, USA}, booktitle = {2021 IEEE 4th International Conference on Soft Robotics (RoboSoft): 2.04.2021 - 16.04.2021, New Haven, CT, USA}, publisher = {IEEE}, isbn = {978-1-7281-7713-7}, doi = {10.1109/robosoft51838.2021.9479193}, pages = {358 -- 363}, abstract = {This work presents a novel concept to develop mobile robots enabling crawling locomotion in tubular environment. Chain-like systems are designed by serial cascading a uniform tensegrity module. Inspired by the movement of worms in nature, an undulating shape change of the system is targeted to generate locomotion. The shape changeability of an exemplary tensegrity module due to internal actuation is examined in simulations and experiments. A prototype consisting of these tensegrity modules is manufactured and the locomotion principle is verified in experiments. Comparing to existing prototypes this approach enables an enhanced compliance due to the modular assembly of tensegrity structures.}, language = {en} } @article{ZimmermannChavezBeckeretal., author = {Zimmermann, Klaus and Chavez, Jhohan and Becker, Tatiana I. and Witte, Hartmut and Schilling, Cornelius and K{\"o}hring, Sebastian and B{\"o}hm, Valter and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Lutz, I. I. and Merker, L.}, title = {An approach to a form-adaptive compliant gripper element based on magneto-sensitive elastomers with a bioinspired sensorized surface}, series = {Problems of Mechanics}, volume = {75}, journal = {Problems of Mechanics}, number = {2}, publisher = {Georgian Technical University}, address = {Tbilisi}, issn = {1512-0740}, pages = {23 -- 38}, language = {en} } @article{ChavezSchorrKaufholdetal., author = {Chavez, Jhohan and Schorr, Philipp and Kaufhold, Tobias and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Influence of Elastomeric Tensioned Members on the Characteristics of Compliant Tensegrity Structures in Soft Robotic Applications}, series = {Procedia Manufacturing}, volume = {52}, journal = {Procedia Manufacturing}, publisher = {Elsevier}, issn = {2351-9789}, doi = {10.1016/j.promfg.2020.11.048}, pages = {289 -- 294}, abstract = {The use of mechanically prestressed compliant structures in soft robotics is a recently discussed topic. Tensegrity structures, consisting of a set of rigid disconnected compressed members connected to a continuous net of prestressed elastic tensioned members build one specific class of these structures. Robots based on these structures have manifold shape changing abilities and can adapt their mechanical properties reversibly by changing of their prestress state according to specific tasks. In the paper selected aspects on the potential use of elastomer materials in these structures are discussed with the help of theoretical analysis. Therefore, a selected basic tensegrity structure with elastomer members is investigated focusing on the stiffness and shape changing ability in dependence of the nonlinear hyperelastic behavior of the used elastomer materials. The considered structure is compared with a conventional tensegrity structure with linear elastic tensioned members. Finally, selected criterions for the advantageous use of elastomer materials in compliant tensegrity robots are discussed.}, language = {en} } @inproceedings{BoehmSumiSchorretal., author = {B{\"o}hm, Valter and Sumi, Susanne and Schorr, Philipp and Zimmermann, Klaus}, title = {Dynamic Analysis of a Compliant Tensegrity Structure for the Use in a Gripper Application}, series = {Dynamical systems in theoretical perspective (DSTA 2017), Ł{\´o}d{\'{z}}, Poland, December 11-14, 2017}, booktitle = {Dynamical systems in theoretical perspective (DSTA 2017), Ł{\´o}d{\'{z}}, Poland, December 11-14, 2017}, editor = {Awrejcewicz, Jan}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-96598-7}, doi = {10.1007/978-3-319-96598-7_26}, pages = {323 -- 334}, abstract = {The use of compliant tensegrity structures in robotic applications offers several advantageous properties. In this work the dynamic behaviour of a planar tensegrity structure with multiple static equilibrium configurations is analysed, with respect to its further use in a two-finger-gripper application. In this application, two equilibrium configurations of the structure correspond to the opened and closed states of the gripper. The transition between these equilibrium configurations, caused by a proper selected actuation method, is essentially dependent on the actuation parameters and on the system parameters. To study the behaviour of the dynamic system and possible actuation methods, the nonlinear equations of motion are derived and transient dynamic analyses are performed. The movement behaviour is analysed in relation to the prestress of the structure and actuation parameters.}, language = {en} } @inproceedings{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Dynamical Investigation of Crawling Motion System based on a Multistable Tensegrity Structure}, series = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, booktitle = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, publisher = {SCITEPRESS}, isbn = {978-989-758-321-6}, doi = {10.5220/0006852701220130}, pages = {122 -- 130}, abstract = {The basic idea of this article is the utilization of the multistable character of a compliant tensegrity structure to control the direction of motion of a crawling motion system. A crawling motion system basing on a two-dimensional tensegrity structure with multiple stable equilibrium states is considered. This system is in contact with a horizontal plane due to gravity. For a selected harmonic actuation of the system small oscillations around the given equilibrium state of the tensegrity structure occur and the corresponding uniaxial motion of the system is evaluated. A change of the equilibrium state of the tensegrity structure yields to novel configuration of the entire system. Moreover, the motion behavior of the novel configuration is totally different although the actuation strategy is not varied. In particular, the direction of motion changes. Therefore, this approach enables a uniaxial bidirectional crawling motion with a controllable direction of motion using only one actuat or with a selected excitation frequency.}, language = {en} } @article{PremChavezBoehmetal., author = {Prem, Nina and Chavez, Jhohan and B{\"o}hm, Valter and Sindersberger, Dirk and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Properties of Polydimethylsiloxane and Magnetoactive Polymers with Electroconductive Particles}, series = {Macromolecular Chemistry and Physics}, volume = {219}, journal = {Macromolecular Chemistry and Physics}, number = {18}, publisher = {Wiley}, doi = {10.1002/macp.201800222}, abstract = {Magnetoactive polymers are intelligent materials whose mechanical and electrical characteristics are reversibly influenced by external magnetic stimuli. They consist of a highly elastic polymer matrix in which magnetically soft and/or hard particles are distributed by means of special fabrication processes. In addition to ferromagnetic particles such as carbonyl iron powder, electrically conductive particles may also be embedded into the polymer matrix. After characterizing a range of compounds, this work focuses on a comparison of the electrical properties and the suitability of various materials for applications, with particular emphasis on integration into 3D and 6D printing processes. 6D printing is based on the selective positioning of particles in a 3D polymer matrix with a further three degrees of freedom for a graduated dispersion of the particles at certain points and in desired directions. The aim is therefore to ensure that the polymers containing electroconductive tracks have the best possible electrical properties, that is, low resistivity but are still capable of being printed. A comparison between the traditionally used compounds containing graphite and carbon black is made for the first time. This latter is found to be greatly superior both in terms of electrical conductivity and applicability to 3D printing and 6D printing.}, language = {en} } @inproceedings{ChavezSchorrScharffetal., author = {Chavez, Jhohan and Schorr, Philipp and Scharff, Moritz and Schale, Florian and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Towards Magneto-Sensitive Elastomers Based End-Effectors for Gripping Application Technologies}, series = {2019 IEEE International Conference on Mechatronics (ICM), 18-20 March 2019, Ilmenau, Germany}, volume = {1}, booktitle = {2019 IEEE International Conference on Mechatronics (ICM), 18-20 March 2019, Ilmenau, Germany}, publisher = {IEEE}, doi = {10.1109/ICMECH.2019.8722922}, pages = {217 -- 222}, abstract = {Nowadays, the demands in engineering systems become more challenging and the use of conventional materials for certain applications is not suitable. This issue encourages the investigation of novel and innovative materials in soft robotics field. A promising approach is the consideration of magneto-sensitive elastomers (MSE). These materials enable a useful adaptability responding to their mechanical properties. By applying a static magnetic field, the static and dynamic characteristics can be tuned. However, currently the knowledge about the correlations are not satisfying and the resulting material properties can only be predicted approximately with the use of time-expensive simulations regarding to the nano scale. Therefore, feasible material simulations of the description of the mechanical behavior are necessary. In this paper experimental studies of the influence of a static magnetic field on the mechanical properties and shape adaptability of MSE are presented. Furthermore, based on these results a simulation for the material behavior is executed. These results can be implemented into further simulations for various MSE exemplars.}, language = {en} } @article{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states}, series = {Journal of Sound and Vibration}, volume = {437}, journal = {Journal of Sound and Vibration}, number = {December}, publisher = {Elsevier}, doi = {10.1016/j.jsv.2018.09.019}, pages = {198 -- 208}, abstract = {A novel type of a vibration driven motion system based on a compliant tensegrity structure with multiple stable equilibrium states is considered. These equilibrium configurations correspond to different prestress states with different dynamical properties. Therefore, the motion characteristics can be varied by changing the equilibrium state. For the application in the fields of mobile robotics, these discrete adjustable dynamics are advantageous. The vibration modes of the structure as well as the corresponding motion characteristics of the system can be adapted to the given environmental conditions in order to ensure a reliable motion. In this paper, dynamical investigations of an exemplary two-dimensional multistable tensegrity structure are considered. For the chosen parameter values the structure features two relevant equilibrium configurations. The resulting motion system is in contact to a horizontal plane due to gravity and the actuation is realized by the harmonic variation of the length of a single tensioned member. The motion of the system is simulated for various actuation frequencies with the different equilibrium states as an initial configuration. A uniaxial or a planar movement occurs depending on the selection of the actuated member within the tensegrity structure. The steady state motion is evaluated regarding motion characteristics like the steady state velocity. Moreover, the influences on the motion behavior caused by the different equilibrium states as an initial condition are emphasized. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} }