@inproceedings{SindersbergerPremMonkmanetal.2021, author = {Sindersberger, Dirk and Prem, Nina and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Self-Sensing Electroadhesive Polymer Gripper with Magnetically Controllable Surface Geometry}, series = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, booktitle = {Actuator 2021, International Conference and Exhibition on New Actuator Systems and Applications: GMM conference, February 17-19, 2021, online event}, editor = {Schlaak, Helmut}, publisher = {VDE VERLAG}, address = {Berlin; Offenbach}, isbn = {9783800754540}, doi = {10.1002/macp.201800222}, pages = {318 -- 320}, year = {2021}, abstract = {Compared to conventional end effectors, electro-adhesive grippers enable the handling of sensitive, soft or air-permeable materials [1]. The prehension force is based on a strong electric field generated by electrodes resulting in a polarisation of the dielectric and the generation of mirror charges in the workpiece. When the electrode supply voltage is deactivated, the electric field drops,but an electrostatic field remains due to remanent polarisation of the dielectric. The residual charge on the gripper surface reduces only slowly and in combination with other influencing factors can prevent the workpieces from being ejected temporarily or completely. In this work a solution to this problem is presented by means of gripper surface deforming caused by the applicat ion of a magnetic field to a magneto- active polymer (MAP) actuator. The in-creased distance between the workpiece and the dielectric enables precise and controlled ejection. In addition to compliance and deformability, the employment of soft smart materials enables the integration of self-sens-ing mechanisms for the measurement of surface deformation. The embedding of electrically conductive flexible electrodes within the soft silicone dielectric sup port such movements and serves as the n ecessary electrodes for electroadhesion. Since the implementation of the end effectoris based entirely on soft materials, the self-sensing magnetically controllable electroadhesive gripper (SMEG) can be produced in a shape deposition manufacturing (SDM) process [2], [3] and is highly applicable to the field of soft robotics.}, language = {de} } @article{ChavezZiolkowskiSchorretal., author = {Chavez, Jhohan and Ziolkowski, Marek and Schorr, Philipp and Spiess, Lothar and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {A method to approach constant isotropic permeabilities and demagnetization factors of magneto-rheological elastomers}, series = {Journal of Magnetism and Magnetic Materials}, volume = {527}, journal = {Journal of Magnetism and Magnetic Materials}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2021.167742}, abstract = {The use of non-conventional materials is nowadays of much interest in scientific community. Magneto-rheological elastomers are hybrid materials, which in presence of magnetic fields state a change in their mechanical properties. They are composed by an elastomeric matrix with embedded magnetic particles. One of the most attractive features of these materials is that as soon as the magnetic field is removed from the material, the original mechanical properties are completely recovered, with negligible differences in comparison to the original state. This paper focuses on the study of magnetic characteristics of these smart materials, such as relative permeability and demagnetizing factors, for samples with different volume concentration of ferromagnetic particles.}, language = {en} } @inproceedings{BoehmSchorrSchaleetal., author = {B{\"o}hm, Valter and Schorr, Philipp and Schale, Florian and Kaufhold, Tobias and Zentner, Lena and Zimmermann, Klaus}, title = {Worm-Like Mobile Robot Based on a Tensegrity Structure}, series = {2021 IEEE 4th International Conference on Soft Robotics (RoboSoft): 2.04.2021 - 16.04.2021, New Haven, CT, USA}, booktitle = {2021 IEEE 4th International Conference on Soft Robotics (RoboSoft): 2.04.2021 - 16.04.2021, New Haven, CT, USA}, publisher = {IEEE}, isbn = {978-1-7281-7713-7}, doi = {10.1109/robosoft51838.2021.9479193}, pages = {358 -- 363}, abstract = {This work presents a novel concept to develop mobile robots enabling crawling locomotion in tubular environment. Chain-like systems are designed by serial cascading a uniform tensegrity module. Inspired by the movement of worms in nature, an undulating shape change of the system is targeted to generate locomotion. The shape changeability of an exemplary tensegrity module due to internal actuation is examined in simulations and experiments. A prototype consisting of these tensegrity modules is manufactured and the locomotion principle is verified in experiments. Comparing to existing prototypes this approach enables an enhanced compliance due to the modular assembly of tensegrity structures.}, language = {en} } @article{ZimmermannChavezBeckeretal., author = {Zimmermann, Klaus and Chavez, Jhohan and Becker, Tatiana I. and Witte, Hartmut and Schilling, Cornelius and K{\"o}hring, Sebastian and B{\"o}hm, Valter and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Lutz, I. I. and Merker, L.}, title = {An approach to a form-adaptive compliant gripper element based on magneto-sensitive elastomers with a bioinspired sensorized surface}, series = {Problems of Mechanics}, volume = {75}, journal = {Problems of Mechanics}, number = {2}, publisher = {Georgian Technical University}, address = {Tbilisi}, issn = {1512-0740}, pages = {23 -- 38}, language = {en} } @article{ChavezSchorrKaufholdetal., author = {Chavez, Jhohan and Schorr, Philipp and Kaufhold, Tobias and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Influence of Elastomeric Tensioned Members on the Characteristics of Compliant Tensegrity Structures in Soft Robotic Applications}, series = {Procedia Manufacturing}, volume = {52}, journal = {Procedia Manufacturing}, publisher = {Elsevier}, issn = {2351-9789}, doi = {10.1016/j.promfg.2020.11.048}, pages = {289 -- 294}, abstract = {The use of mechanically prestressed compliant structures in soft robotics is a recently discussed topic. Tensegrity structures, consisting of a set of rigid disconnected compressed members connected to a continuous net of prestressed elastic tensioned members build one specific class of these structures. Robots based on these structures have manifold shape changing abilities and can adapt their mechanical properties reversibly by changing of their prestress state according to specific tasks. In the paper selected aspects on the potential use of elastomer materials in these structures are discussed with the help of theoretical analysis. Therefore, a selected basic tensegrity structure with elastomer members is investigated focusing on the stiffness and shape changing ability in dependence of the nonlinear hyperelastic behavior of the used elastomer materials. The considered structure is compared with a conventional tensegrity structure with linear elastic tensioned members. Finally, selected criterions for the advantageous use of elastomer materials in compliant tensegrity robots are discussed.}, language = {en} } @inproceedings{BoehmSumiSchorretal., author = {B{\"o}hm, Valter and Sumi, Susanne and Schorr, Philipp and Zimmermann, Klaus}, title = {Dynamic Analysis of a Compliant Tensegrity Structure for the Use in a Gripper Application}, series = {Dynamical systems in theoretical perspective (DSTA 2017), Ł{\´o}d{\'{z}}, Poland, December 11-14, 2017}, booktitle = {Dynamical systems in theoretical perspective (DSTA 2017), Ł{\´o}d{\'{z}}, Poland, December 11-14, 2017}, editor = {Awrejcewicz, Jan}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-96598-7}, doi = {10.1007/978-3-319-96598-7_26}, pages = {323 -- 334}, abstract = {The use of compliant tensegrity structures in robotic applications offers several advantageous properties. In this work the dynamic behaviour of a planar tensegrity structure with multiple static equilibrium configurations is analysed, with respect to its further use in a two-finger-gripper application. In this application, two equilibrium configurations of the structure correspond to the opened and closed states of the gripper. The transition between these equilibrium configurations, caused by a proper selected actuation method, is essentially dependent on the actuation parameters and on the system parameters. To study the behaviour of the dynamic system and possible actuation methods, the nonlinear equations of motion are derived and transient dynamic analyses are performed. The movement behaviour is analysed in relation to the prestress of the structure and actuation parameters.}, language = {en} } @inproceedings{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Dynamical Investigation of Crawling Motion System based on a Multistable Tensegrity Structure}, series = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, booktitle = {Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics : Porto, Portugal, 29.07.2018 - 31.07.2018}, publisher = {SCITEPRESS}, isbn = {978-989-758-321-6}, doi = {10.5220/0006852701220130}, pages = {122 -- 130}, abstract = {The basic idea of this article is the utilization of the multistable character of a compliant tensegrity structure to control the direction of motion of a crawling motion system. A crawling motion system basing on a two-dimensional tensegrity structure with multiple stable equilibrium states is considered. This system is in contact with a horizontal plane due to gravity. For a selected harmonic actuation of the system small oscillations around the given equilibrium state of the tensegrity structure occur and the corresponding uniaxial motion of the system is evaluated. A change of the equilibrium state of the tensegrity structure yields to novel configuration of the entire system. Moreover, the motion behavior of the novel configuration is totally different although the actuation strategy is not varied. In particular, the direction of motion changes. Therefore, this approach enables a uniaxial bidirectional crawling motion with a controllable direction of motion using only one actuat or with a selected excitation frequency.}, language = {en} } @article{PremChavezBoehmetal., author = {Prem, Nina and Chavez, Jhohan and B{\"o}hm, Valter and Sindersberger, Dirk and Monkman, Gareth J. and Zimmermann, Klaus}, title = {Properties of Polydimethylsiloxane and Magnetoactive Polymers with Electroconductive Particles}, series = {Macromolecular Chemistry and Physics}, volume = {219}, journal = {Macromolecular Chemistry and Physics}, number = {18}, publisher = {Wiley}, doi = {10.1002/macp.201800222}, abstract = {Magnetoactive polymers are intelligent materials whose mechanical and electrical characteristics are reversibly influenced by external magnetic stimuli. They consist of a highly elastic polymer matrix in which magnetically soft and/or hard particles are distributed by means of special fabrication processes. In addition to ferromagnetic particles such as carbonyl iron powder, electrically conductive particles may also be embedded into the polymer matrix. After characterizing a range of compounds, this work focuses on a comparison of the electrical properties and the suitability of various materials for applications, with particular emphasis on integration into 3D and 6D printing processes. 6D printing is based on the selective positioning of particles in a 3D polymer matrix with a further three degrees of freedom for a graduated dispersion of the particles at certain points and in desired directions. The aim is therefore to ensure that the polymers containing electroconductive tracks have the best possible electrical properties, that is, low resistivity but are still capable of being printed. A comparison between the traditionally used compounds containing graphite and carbon black is made for the first time. This latter is found to be greatly superior both in terms of electrical conductivity and applicability to 3D printing and 6D printing.}, language = {en} } @inproceedings{ChavezSchorrScharffetal., author = {Chavez, Jhohan and Schorr, Philipp and Scharff, Moritz and Schale, Florian and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Towards Magneto-Sensitive Elastomers Based End-Effectors for Gripping Application Technologies}, series = {2019 IEEE International Conference on Mechatronics (ICM), 18-20 March 2019, Ilmenau, Germany}, volume = {1}, booktitle = {2019 IEEE International Conference on Mechatronics (ICM), 18-20 March 2019, Ilmenau, Germany}, publisher = {IEEE}, doi = {10.1109/ICMECH.2019.8722922}, pages = {217 -- 222}, abstract = {Nowadays, the demands in engineering systems become more challenging and the use of conventional materials for certain applications is not suitable. This issue encourages the investigation of novel and innovative materials in soft robotics field. A promising approach is the consideration of magneto-sensitive elastomers (MSE). These materials enable a useful adaptability responding to their mechanical properties. By applying a static magnetic field, the static and dynamic characteristics can be tuned. However, currently the knowledge about the correlations are not satisfying and the resulting material properties can only be predicted approximately with the use of time-expensive simulations regarding to the nano scale. Therefore, feasible material simulations of the description of the mechanical behavior are necessary. In this paper experimental studies of the influence of a static magnetic field on the mechanical properties and shape adaptability of MSE are presented. Furthermore, based on these results a simulation for the material behavior is executed. These results can be implemented into further simulations for various MSE exemplars.}, language = {en} } @article{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Motion characteristics of a vibration driven mobile tensegrity structure with multiple stable equilibrium states}, series = {Journal of Sound and Vibration}, volume = {437}, journal = {Journal of Sound and Vibration}, number = {December}, publisher = {Elsevier}, doi = {10.1016/j.jsv.2018.09.019}, pages = {198 -- 208}, abstract = {A novel type of a vibration driven motion system based on a compliant tensegrity structure with multiple stable equilibrium states is considered. These equilibrium configurations correspond to different prestress states with different dynamical properties. Therefore, the motion characteristics can be varied by changing the equilibrium state. For the application in the fields of mobile robotics, these discrete adjustable dynamics are advantageous. The vibration modes of the structure as well as the corresponding motion characteristics of the system can be adapted to the given environmental conditions in order to ensure a reliable motion. In this paper, dynamical investigations of an exemplary two-dimensional multistable tensegrity structure are considered. For the chosen parameter values the structure features two relevant equilibrium configurations. The resulting motion system is in contact to a horizontal plane due to gravity and the actuation is realized by the harmonic variation of the length of a single tensioned member. The motion of the system is simulated for various actuation frequencies with the different equilibrium states as an initial configuration. A uniaxial or a planar movement occurs depending on the selection of the actuated member within the tensegrity structure. The steady state motion is evaluated regarding motion characteristics like the steady state velocity. Moreover, the influences on the motion behavior caused by the different equilibrium states as an initial condition are emphasized. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @inproceedings{SchorrSchaleOtterbachetal., author = {Schorr, Philipp and Schale, Florian and Otterbach, Jean Marc and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Investigation of a Multistable Tensegrity Robot applied as Tilting Locomotion System}, series = {Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA): 31 May-31 August 2020, Paris}, booktitle = {Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA): 31 May-31 August 2020, Paris}, doi = {10.1109/ICRA40945.2020.9196706}, pages = {2932 -- 2938}, abstract = {This paper describes the development of a tilting locomotion system based on a compliant tensegrity structure with multiple stable equilibrium configurations. A tensegrity structure featuring 4 stable equilibrium states is considered. The mechanical model of the structure is presented and the according equations of motion are derived. The variation of the length of selected structural members allows to influence the prestress state and the corresponding shape of the tensegrity structure. Based on bifurcation analyses a reliable actuation strategy to control the current equilibrium state is designed. In this work, the tensegrity structure is assumed to be in contact with a horizontal plane due to gravity. The derived actuation strategy is utilized to generate tilting locomotion by successively changing the equilibrium state. Numerical simulations are evaluated considering the locomotion characteristics. In order to validate this theoretical approach a prototype is developed. Experiments regarding to the equilibrium configurations, the actuation strategy and the locomotion characteristics are evaluated using image processing tools and motion capturing. The results verify the theoretical data and confirm the working principle of the investigated tilting locomotion system. This approach represents a feasible actuation strategy to realize a reliable tilting locomotion utilizing the multistability of compliant tensegrity structures.}, language = {en} } @inproceedings{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Design of a Vibration Driven Motion System Based on a Multistable Tensegrity Structure}, series = {ICINCO 2018: proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, Porto, Portugal, July 29-31, 2018}, volume = {613}, booktitle = {ICINCO 2018: proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, Porto, Portugal, July 29-31, 2018}, editor = {Gusikhin, Oleg and Madani, Kurosh}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-31992-2}, doi = {10.1007/978-3-030-31993-9_14}, pages = {302 -- 317}, abstract = {In this paper a novel approach to realize a uniaxial bidirectional vibration driven motion system with controllable direction of motion is investigated. The considered motion system bases on a tensegrity structure with multiple stable equilibrium configurations. The structure is in contact with a horizontal plane due to gravity and the actuation is realized by the harmonic change of the length of a selected member. Beside varying the actuation parameters, the direction of motion can be controlled by changing the equilibrium configuration of the tensegrity structure. In this paper the topology of the tensegrity structure and the parameter values are chosen appropriately to provide two symmetric equilibrium configurations. A change of the equilibrium state yields a novel configuration of the entire motion system which is symmetric to the original state. Utilizing the symmetry of the system the same actuation yields an opposite motion. This approach represents a reliable opportunity to control the direction of motion by changing the equilibrium state for constant actuation parameters. This paper focuses on the parameter selection and the design of the actuation of the vibration driven motion system. The working principle of the vibration driven motion system is verified by numerical simulations. This contribution represents the theoretical investigation for the further development of a prototype.}, language = {en} } @inproceedings{BoehmSchorrZimmermannetal., author = {B{\"o}hm, Valter and Schorr, Philipp and Zimmermann, Klaus and Zentner, Lena}, title = {An Approach to the Estimation of the Actuation Parameters for Mobile Tensegrity Robots with Tilting Movement Sequences}, series = {2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); 20-22 June 2018; Delft, Netherlands}, booktitle = {2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR); 20-22 June 2018; Delft, Netherlands}, publisher = {IEEE}, doi = {10.1109/REMAR.2018.8449871}, pages = {1 -- 8}, abstract = {This paper deals with the locomotion by tilting sequences of shape-variable compliant tensegrity structures. The shape of these structures is controlled by manipulating their prestress state. The tensegrity structure is tilting as consequence of a suitable variation of its shape. By multiple repetition of such tilting sequences a motion is generated. Quasi-static considerations for the considered structures are presented in order to estimate the actuation parameters. For a proper number of actuators this quasi-static approach enables an analytical calculation of the actuation parameters of the structure in order to control the geometrical configuration as required. As an example a two-dimensional tensegrity structure which is in contact with a horizontal plane due to gravity is considered. By successive tilting sequences a uniaxial motion results. The excitation of the structure is calculated for a given change of shape with the quasi-static analysis. The according results are compared with transient dynamic simulations. Qualitative conclusions about the motion behavior and the usability of the quasi-static approach are given.}, language = {en} } @article{BeckerBoehmChavezetal., author = {Becker, Tatiana I. and B{\"o}hm, Valter and Chavez, Jhohan and Odenbach, Stefan and Raikher, Yuriy L. and Zimmermann, Klaus}, title = {Magnetic-field-controlled mechanical behavior of magneto-sensitive elastomers in applications for actuator and sensor systems}, series = {Archive of Applied Mechanics}, volume = {89}, journal = {Archive of Applied Mechanics}, number = {1}, publisher = {Springer Nature}, doi = {10.1007/s00419-018-1477-4}, pages = {133 -- 152}, abstract = {The development of actuator and sensor systems with complex adaptive behavior and operating sensitivity is one of the actual scientific challenges. Smart materials like magneto-sensitive elastomers (MSEs) offer great potential for designing such intelligent devices, because they possess unique magnetic-field-dependent properties. The present paper deals with investigations of the free and forced vibrational behavior displayed by cantilever beams of MSEs containing magnetically soft particles in a uniform magnetic field. It is shown experimentally as well as theoretically that the first bending eigenfrequency of MSE beams depends strongly on the strength of an applied magnetic field. The proposed magneto-mechanical model is based on the vibrational dynamics of thin rods and predicts reliably the amplitude-frequency characteristics depending on the geometric configuration of the MSE and its material parameters. It is found that the vibration response of an MSE beam under kinematic excitation of its base can be modified indirectly by a magnetic field control due to the change of the vibration characteristics. As a result, the resonance can occur in different ranges of the excitation frequency. The dependencies of the amplification ratio on the excitation frequency are obtained experimentally and compared with the result provided by the theoretical model. Moreover, investigations on the potential use of the field-induced plasticity effect of MSEs in form-fit gripper applications are presented. This effect can be used to realize shape adaptable system parts. It is found that the mechanical properties of each component and its concentration within the mixture have an impact on the mechanical behavior of the whole MSE compound. Such parameters as the strength of magnetic field and geometry of the MSE sample have influence on the quality of shape adaptation. The evidence presented provides a good basis for the realization of MSE-based actuator and sensor systems with adaptable sensitivity.}, language = {en} } @inproceedings{CarrilloLiSchorrKaufholdetal., author = {Carrillo Li, Enrique Roberto and Schorr, Philipp and Kaufhold, Tobias and Rodr{\´i}guez Hern{\´a}ndez, Jorge Antonio and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Kinematic analysis of the rolling locomotion of mobile robots based on tensegrity structures with spatially curved compressed components}, series = {Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland}, booktitle = {Applicable Solutions in Non-Linear Dynamical Systems; 15th International Conference "Dynamical Systems - Theory and Applications" (DSTA 2019, 2-5 December, 2019, Lodz, Poland}, editor = {Awrejcewicz, Jan and Ka{\'{z}}mierczak, Markek and Olejnik, Paweł}, publisher = {Wydawnictwo Politechniki Ł{\´o}dzkiej}, address = {Ł{\´o}d{\'{z}}, Polen}, isbn = {978-83-66287-30-3}, pages = {335 -- 344}, abstract = {In this work, a tensegrity structure with spatially curved members is applied as rolling locomotion system. The actuation of the structure allows a variation of the originally cylindrical shape to a conical shape. Moreover, the structure is equipped with internal movable masses to control the position of the center of mass of the structure. To control the locomotion system a reliable actuation strategy is required. Therefore, the kinematics of the system considering the nonholonomic constraints are derived in this paper. Based on the resulting insight in the locomotion behavior a feasible actuation strategy is designed to control the trajectory of the system. To verify this approach kinematic analyses are evaluated numerically. The simulation data confirm the path following due to an appropriate shape change of the tensegrity structure. Thus, this system enables a two-dimensional rolling locomotion. The use of mechanically compliant tensegrity structures in mobile robots is an attractive research topic, due to the possibility to adjust their mechanical properties reversibly during locomotion. In this paper rolling locomotion of mobile robots based on simple tensegrity structures, consisting of three compressed spatially curved members connected to a continuous net of prestressed tensional members, is discussed. Planar locomotion of these robots is induced by the movement of internal masses. The movement direction can be changed by changing the robot's shape between a cylinder and a truncated cone. The paper focuses on the description of the kinematics of these systems with respect to the shape change.}, language = {en} } @inproceedings{KouakouoBoehmZimmermann, author = {Kouakouo, S. and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Analyses of apedal locomotion systems based on ferroelastomers}, series = {Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers}, booktitle = {Proceedings I of the 28st Conference STUDENT EEICT 2022: General papers}, publisher = {Vysok{\´e} učen{\´i} technick{\´e} v Brně, Fakulta elektrotechniky a komunikačn{\´i}ch technologi{\´i}}, isbn = {978-80-214-6029-4}, pages = {447 -- 451}, abstract = {In this paper, the movement behavior of amoeboid locomotion system is investigated and the theoretical proof of the locomotion of the system is provided with the finite element method. It is shown that not only the speed of locomotion but also its direction can be influenced by the drive frequency. Depending on the drive frequency, a movement from the home position and a subsequent movement in opposite directions can be achieved. In addition, high speeds of movement can be achieved in a limited frequency range.}, language = {en} } @article{BeckerBoehmSchaleetal., author = {Becker, Tatiana I. and B{\"o}hm, Valter and Schale, F. and Zimmermann, Klaus}, title = {Vibrating sensor unit made of a magnetoactive elastomer with field-adjustable characteristics}, series = {Journal of Magnetism and Magnetic Materials}, volume = {498}, journal = {Journal of Magnetism and Magnetic Materials}, number = {March}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2019.166196}, abstract = {The present work deals with the investigation of the oscillatory behavior displayed by a vibrating sensor unit made of a magnetoactive elastomer (MAE). Since this type of smart materials consists of an elastic matrix and micro-magnetic particles, it reveals exceptional magnetic-field-dependent material properties. The forced vibration response under the bending of the MAE unit subjected to in-plane harmonic kinematic excitation of the housing is studied. It is found that the amplitude-frequency characteristics of the MAE unit can be changed considerably by means of an external homogeneous magnetic field. With and without applied field, the unit displays different steady-state responses for the same excitation, and the resonance occurs at various ranges of the excitation frequency. The nonlinear phenomenon of the resonance hysteresis is observed depending on whether the excitation frequency increases or decreases. It is shown that the MAE vibrations can be detected based on the magnetic field distortion measurements. The presented prototype of the MAE-based vibrating unit with field-adjustable "configuration" can be potentially implemented for realization of acceleration sensor systems with adaptive sensitivity.}, language = {en} } @inproceedings{SchorrBoehmStepanetal., author = {Schorr, Philipp and B{\"o}hm, Valter and Stepan, G. and Zentner, Lena and Zimmermann, Klaus and St{\´e}p{\´a}n, G.}, title = {Multi-mode motion system based on a multistable tensegrity structure}, series = {Advances in Mechanism and Machine Science : Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science}, volume = {73}, booktitle = {Advances in Mechanism and Machine Science : Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science}, editor = {Uhl, Tadeusz}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-20130-2}, doi = {10.1007/978-3-030-20131-9_296}, pages = {3007 -- 3016}, abstract = {This paper presents a multi-mode motion system based on a compliant tensegrity structure with multiple stable equilibrium configurations. The motion system is in contact to an arbitrarily shaped rigid ground due to gravity. The movement is realized by changing successively between different equilibrium states. Depending on the strategy of changing the equilibrium configuration, different motion types occur. The reachable area of the motion system can be enlarged by adapting the motion type depending on the given environmental characteristics. Furthermore, the efficiency of the motion can be improved by choosing the most suitable motion mode. Theoretical studies regarding the change of the equilibrium states are introduced. Moreover, simulation results for the different motion modes tilting, vibration driven and jumping are illustrated. The resulting motion characteristics emphasize the advantageous adaptability of the motion system regarding to varying environmental conditions.}, language = {en} } @inproceedings{BoehmSchorrFeldmeieretal., author = {B{\"o}hm, Valter and Schorr, Philipp and Feldmeier, T. and Chavez, Jhohan and Henning, S. and Zimmermann, Klaus and Zentner, Lena}, title = {An Approach to Robotic End Effectors Based on Multistable Tensegrity Structures}, series = {New Trends in Mechanism and Machine Science: 8th European Conference on Mechanism Science (EuCoMeS), 2020}, booktitle = {New Trends in Mechanism and Machine Science: 8th European Conference on Mechanism Science (EuCoMeS), 2020}, publisher = {Springer}, doi = {10.1007/978-3-030-55061-5_53}, pages = {470 -- 478}, abstract = {In this paper compliant multistable tensegrity structures with discrete variable stiffness are investigated. The different stiffness states result from the different prestress states of these structures corresponding to the equilibrium configurations. Three planar tensegrity mechanisms with two stable equilibrium configurations are considered exemplarily. The overall stiffness of these structures is characterized by investigations with regard to their geometric nonlinear static behavior. Dynamical analyses show the possibility of the change between the equilibrium configurations and enable the derivation of suitable actuation strategies.}, language = {en} } @misc{ChavezBoehmScharffetal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Scharff, M. and Prem, Nina and Monkman, Gareth J. and Becker, Tatiana I. and G{\"u}nther, L. and Alencastre, Jorge H. and Grieseler, R. and Zimmermann, Klaus}, title = {Magneto-active elastomer as viscoelastic foundation material for artificial tactile sensors with tuneable properties}, series = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, journal = {Book of Abstracts of the 16th German Ferrofluid Workshop, Braunschweig, 18.-20.07.2018}, pages = {16 -- 17}, language = {en} } @inproceedings{SchorrBoehmZentneretal., author = {Schorr, Philipp and B{\"o}hm, Valter and Zentner, Lena and Zimmermann, Klaus}, title = {Investigation of a tensegrity structure with multiple equilibrium configurations as jumping motion system}, series = {Theoretical Approaches in Non-Linear Dynamical Systems : Proceedings of the 15th Conference on Dynamical Systems -Theory and Applications}, booktitle = {Theoretical Approaches in Non-Linear Dynamical Systems : Proceedings of the 15th Conference on Dynamical Systems -Theory and Applications}, publisher = {Wydawnictwo Politechniki Ł{\´o}dzkiej}, address = {Ł{\´o}d{\'{z}}, Polen}, isbn = {978-83-66287-29-7}, pages = {465 -- 476}, abstract = {Often, the operating range of mobile robots is limited by environ- mental circumstances like obstacles or gaps. Therefore, an adaptation of the motion principle is required to enable an operating continuation of such robots. A jumping motion is a promising approach. This motion type allows to cross gaps or to overcome obstacles where common motion principles which bases on wheels or legs fail. However, especially during landing large forces occur as a consequence of the impact with the ground. This issue encourages the use of compliant tensegrity structures which feature a great shock resistance. In this paper a tensegrity structure with multiple equilibrium configurations is considered. The two-dimensional structure is equipped with two actuators to vary the prestress of the system. The tensegrity structure is in contact to a horizontal plane due to gravity. Two actuation strategies are derived. Beside varying the prestress state of the structure, a jump can be realized by changing the equilibrium configuration. Both actuation strategies and the corresponding motion characteristics are evaluated by numeric simulations. The results emphasize the advantageous properties of tensegrity structures for a jumping motion system. In particular, the multistabilty of the structure allows a simple actuation strategy for a reliable jumping motion.}, language = {en} } @article{SchuemannMorichKaufholdetal., author = {Sch{\"u}mann, Malte and Morich, J. and Kaufhold, T. and B{\"o}hm, Valter and Zimmermann, Klaus and Odenbach, Stefan}, title = {A mechanical characterisation on multiple timescales of electroconductive magnetorheological elastomers}, series = {Magnetism and Magnetic Materials}, volume = {453}, journal = {Magnetism and Magnetic Materials}, number = {May}, publisher = {Elsevier}, doi = {10.1016/j.jmmm.2018.01.029}, pages = {198 -- 205}, abstract = {Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.}, language = {en} } @article{ZimmermannBoehmBeckerTIetal., author = {Zimmermann, Klaus and B{\"o}hm, Valter and Becker T.I., and Chavez, Jhohan and Kaufhold, T. and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Prem, Nina}, title = {Mechanical Characterization of the Field-Dependent Properties of Magnetoactive Polymers and Integrated Electrets for their Application in Soft Robotics}, series = {International Scientific Journal "Problems of Mechanics"}, volume = {69}, journal = {International Scientific Journal "Problems of Mechanics"}, number = {4}, issn = {1512-0740}, language = {en} } @misc{ChavezBoehmYinetal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Yin, J. and Becker, Tatiana I. and K{\"o}hring, S. and Monkman, Gareth J. and Odenbach, S. and Zimmermann, Klaus}, title = {Field induced plasticity of magneto-sensitive elastomers for gripping technology applications}, series = {6th Colloquium of SPP 1681, Benediktbeuern, 26. - 28.09.2018 : Book of Abstracts}, journal = {6th Colloquium of SPP 1681, Benediktbeuern, 26. - 28.09.2018 : Book of Abstracts}, pages = {16 -- 17}, language = {en} } @incollection{ChavezBoehmBeckeretal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Becker, Tatiana I. and Gast, Simon and Zeidis, Igor and Zimmermann, Klaus}, title = {Actuators based on a controlled particlematrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems}, series = {Magnetic Hybrid-Materials: Multi-scale modelling synthesis and applications}, booktitle = {Magnetic Hybrid-Materials: Multi-scale modelling synthesis and applications}, editor = {Odenbach, Stefan}, publisher = {De Gruyter}, address = {Berlin}, isbn = {9783110569636}, doi = {10.1515/9783110569636-027}, pages = {653 -- 680}, abstract = {The paper deals with the investigation of magneto-sensitive elastomers(MSE) and their application in technical actuator systems. MSE consist of an elasticmatrix containing suspended magnetically soft and/or hard particles. Additionally,they can also contain silicone oil, graphite particles, thermoplastic components, etc.,in various concentrations in order to tune specific properties such as viscosity, con-ductivity and thermoelasticity, respectively. The focuses of investigations are thebeneficial properties of MSE in prototypes for locomotion and manipulation purposesthat possess an integrated sensor function. The research follows the principle of amodel-based design, i.e. the working steps are ideation, mathematical modelling,material characterization as well as building first functional models (prototypes). Thedeveloped apedal (without legs) and non-wheeled locomotion systems use the inter-play between material deformations and the mechanical motion in connection with theissues of control and stability. Non-linear friction phenomena lead to a monotonousforward motion of the systems. The aim of this study is the design of such mechanicalstructures, which reduce the control costs. The investigations deal with the movementand control of'intelligent'mechanisms, for which the magnetically field-controlledparticle-matrix interactions provide an appropriate approach. The presented grippersenclose partially gripped objects, which is an advantage for handling sensitive objects.Form-fit grippers with adaptable contour at the contact area enable a uniform pressuredistribution on the surface of gripped objects. Furthermore, with the possibility ofactive shape adaptation, objects with significantly differing geometries can be gripped.To realise the desired active shape adaptation, the effect of field-induced plasticity ofMSE is used. The first developed prototypes mainly confirm the functional principles assuch without direct application. For this, besides the ability of locomotion andmanipulation itself, further technological possibilities have to be added to the systems.}, language = {en} } @article{SchorrZentnerZimmermannetal., author = {Schorr, Philipp and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Jumping locomotion system based on a multistable tensegrity structure}, series = {Mechanical systems and signal processing}, journal = {Mechanical systems and signal processing}, number = {152}, publisher = {Elsevier}, doi = {10.1016/j.ymssp.2020.107384}, abstract = {All known locomotion principles are limited respective to environmental conditions. Often, the occurrence of obstacles or gaps means the break-off for the operating motion systems. For such circumstances, a controllable jumping locomotion is required to cross these barriers. However, this locomotion demands sophisticated requirements to the actuation. The abrupt actuation is commonly realized by high dynamic actuators or complex mechanisms. In this work, a simple solution utilizing the multistability of a compliant tensegrity structure is described. Therefore, a two-dimensional tensegrity structure featuring four stable equilibria is considered. Based on bifurcation analyses a feasible actuation to control the current equilibrium configuration is derived. Changing between selected equilibrium states enables a great difference in potential energy, which yields a jumping motion of the structure. Based on numerical simulations a suitable actuation strategy is chosen to overcome obstacle and steps by jumping forward or backward, respectively. The theoretical approach is examined experimentally with a prototype of the multistable tensegrity structure. (c) 2020 Elsevier Ltd. All rights reserved. All known locomotion principles are limited respective to environmental conditions. Often, the occurrence of obstacles or gaps means the break-off for the operating motion systems. For such circumstances, a controllable jumping locomotion is required to cross these barriers. However, this locomotion demands sophisticated requirements to the actuation. The abrupt actuation is commonly realized by high dynamic actuators or complex mechanisms. In this work, a simple solution utilizing the multistability of a compliant tensegrity structure is described. Therefore, a two-dimensional tensegrity structure featuring four stable equilibria is considered. Based on bifurcation analyses a feasible actuation to control the current equilibrium configuration is derived. Changing between selected equilibrium states enables a great difference in potential energy, which yields a jumping motion of the structure. Based on numerical simulations a suitable actuation strategy is chosen to overcome obstacle and steps by jumping forward or backward, respectively. The theoretical approach is examined experimentally with a prototype of the multistable tensegrity structure.}, language = {en} } @article{ChavezBoehmBeckeretal., author = {Chavez, Jhohan and B{\"o}hm, Valter and Becker, Tatiana I. and Gast, Simon and Zeidis, Igor and Zimmermann, Klaus}, title = {Actuators based on a controlled particle-matrix interaction in magnetic hybrid materials for applications in locomotion and manipulation systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {11}, publisher = {de Gruyter}, doi = {10.1515/psr-2019-0087}, pages = {1263 -- 1290}, abstract = {The paper deals with the investigation of magneto-sensitive elastomers (MSE) and their application in technical actuator systems. MSE consist of an elastic matrix containing suspended magnetically soft and/or hard particles. Additionally, they can also contain silicone oil, graphite particles, thermoplastic components, etc., in various concentrations in order to tune specific properties such as viscosity, conductivity and thermoelasticity, respectively. The focuses of investigations are the beneficial properties of MSE in prototypes for locomotion and manipulation purposes that possess an integrated sensor function. The research follows the principle of a model-based design, i.e. the working steps are ideation, mathematical modelling, material characterization as well as building first functional models (prototypes). The developed apedal (without legs) and non-wheeled locomotion systems use the interplay between material deformations and the mechanical motion in connection with the issues of control and stability. Non-linear friction phenomena lead to a monotonous forward motion of the systems. The aim of this study is the design of such mechanical structures, which reduce the control costs. The investigations deal with the movement and control of 'intelligent' mechanisms, for which the magnetically field-controlled particle-matrix interactions provide an appropriate approach. The presented grippers enclose partially gripped objects, which is an advantage for handling sensitive objects. Form-fit grippers with adaptable contour at the contact area enable a uniform pressure distribution on the surface of gripped objects. Furthermore, with the possibility of active shape adaptation, objects with significantly differing geometries can be gripped. To realise the desired active shape adaptation, the effect of field-induced plasticity of MSE is used. The first developed prototypes mainly confirm the functional principles as such without direct application. For this, besides the ability of locomotion and manipulation itself, further technological possibilities have to be added to the systems. The first steps are therefore being taken towards integrated MSE based adaptive sensor systems.}, language = {en} } @article{BeckerRaikherStolbovetal., author = {Becker, Tatiana I. and Raikher, Yuriy L. and Stolbov, Oleg V. and B{\"o}hm, Valter and Zimmermann, Klaus}, title = {Magnetoactive elastomers for magnetically tunable vibrating sensor systems}, series = {Physical Sciences Reviews}, volume = {7}, journal = {Physical Sciences Reviews}, number = {10}, publisher = {de Gruyter}, issn = {2365-659X}, doi = {10.1515/psr-2019-0125}, pages = {1 -- 28}, abstract = {Magnetoactive elastomers (MAEs) are a special type of smart materials consisting of an elastic matrix with embedded microsized particles that are made of ferromagnetic materials with high or low coercivity. Due to their composition, such elastomers possess unique magnetic field-dependent material properties. The present paper compiles the results of investigations on MAEs towards an approach of their potential application as vibrating sensor elements with adaptable sensitivity. Starting with the model-based and experimental studies of the free vibrational behavior displayed by cantilevers made of MAEs, it is shown that the first bending eigenfrequency of the cantilevers depends strongly on the strength of an applied uniform magnetic field. The investigations of the forced vibration response of MAE beams subjected to in-plane kinematic excitation confirm the possibility of active magnetic control of the amplitude-frequency characteristics. With change of the uniform field strength, the MAE beam reveals different steady-state responses for the same excitation, and the resonance may occur at various ranges of the excitation frequency. Nonlinear dependencies of the amplification ratio on the excitation frequency are obtained for different magnitudes of the applied field. Furthermore, it is shown that the steady-state vibrations of MAE beams can be detected based on the magnetic field distortion. The field difference, which is measured simultaneously on the sides of a vibrating MAE beam, provides a signal with the same frequency as the excitation and an amplitude proportional to the amplitude of resulting vibrations. The presented prototype of the MAE-based vibrating unit with the field-controlled "configuration" can be implemented for realization of acceleration sensor systems with adaptable sensitivity. The ongoing research on MAEs is oriented to the use of other geometrical forms along with beams, e.g. two-dimensional structures such as membranes.}, language = {de} } @article{SchorrCarrilloLiKaufholdetal., author = {Schorr, Philipp and Carrillo Li, Enrique Roberto and Kaufhold, Tobias and Rodriguez Hernandez, Jorge Antonio and Zentner, Lena and Zimmermann, Klaus and B{\"o}hm, Valter}, title = {Kinematic analysis of a rolling tensegrity structure with spatially curved members}, series = {Meccanica}, volume = {56}, journal = {Meccanica}, publisher = {Springer}, organization = {Springer}, issn = {0025-6455}, doi = {10.1007/s11012-020-01199-x}, pages = {953 -- 961}, abstract = {In this work, a tensegrity structure with spatially curved members is applied as rolling locomotion system. The actuation of the structure allows a variation of the originally cylindrical shape to a conical shape. Moreover, the structure is equipped with internal movable masses to control the position of the center of mass of the structure. To control the locomotion system a reliable actuation strategy is required. Therefore, the kinematics of the system considering the nonholonomic constraints are derived in this paper. Based on the resulting insight in the locomotion behavior a feasible actuation strategy is designed to control the trajectory of the system. To verify this approach kinematic analyses are evaluated numerically. The simulation data confirm the path following due to an appropriate shape change of the tensegrity structure. Thus, this system enables a two-dimensional rolling locomotion.}, language = {en} }