@article{BerndtMuggliWittweretal., author = {Berndt, Dominik and Muggli, Josef and Wittwer, Franz and Langer, Christoph and Heinrich, Stephan and Knittel, Thorsten and Schreiner, Rupert}, title = {MEMS-based thermal conductivity sensor for hydrogen gas detection in automotive applications}, series = {Sensors and Actuators A: Physical}, volume = {305}, journal = {Sensors and Actuators A: Physical}, number = {April}, publisher = {Elsevier}, doi = {10.1016/j.sna.2019.111670}, abstract = {Accurate detection of hydrogen gas in vehicle interiors is very important for the future of a fuel cell car. Since this type of gas is highly volatile and flammable, the measurement methods have to be very reliable and precise due to safety reasons. In this paper a thermal conductivity sensor for hydrogen gas detection is presented, exhibiting a lower detection limit of 2000 ppm hydrogen in laboratory air. The sensor element is realized by micro-fabrication techniques on silicon wafers. The heated filament is exposed by a selective wet etching process creating a micro-hotplate on a thin membrane. In order to minimize power consumption, the sensor is operated in pulsed mode. Hydrogen gas detection was carried out using a synthetic gas testbench. Measurements of hydrogen contents ranging from 0\% to 4\% with an increment of 0.5\% were successfully performed for ambient gas temperatures between -15°C and 84°C. Including humidity, high moisture contents have the greatest influence on thermal conductivity. This was predicted in theoretical investigations and confirmed in experiments. For evaluation, both the change in resistance ΔR as well as the time constant τ were taken as sensor output. For both quantities, the previously established theoretical relationship with thermal conductivity could be confirmed.}, language = {en} } @article{BerndtMuggliHeckeletal., author = {Berndt, Dominik and Muggli, Josef and Heckel, Robert and Rahiman, Mohd Fuad and Lindner, Matthias and Heinrich, Stephan and Pl{\"o}chinger, Heinz and Schreiner, Rupert}, title = {A Robust Miniaturized Gas Sensor for H₂ and CO₂ Detection Based on the 3ω Method}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {2}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s22020485}, pages = {1 -- 17}, abstract = {Gas concentration monitoring is essential in industrial or life science areas in order to address safety-relevant or process-related questions. Many of the sensors used in this context are based on the principle of thermal conductivity. The 3ω-method is a very accurate method to determine the thermal properties of materials. It has its origin in the thermal characterization of thin solid films. To date, there have been very few scientific investigations using this method to determine the thermal properties of gases and to apply it to gas measurement technology. In this article, we use two exemplary gases (H2 and CO2) for a systematical investigation of this method in the context of gas analysis. To perform our experiments, we use a robust, reliable sensing element that is already well established in vacuum measurement technology. This helix-shaped thin wire of tungsten exhibits high robustness against chemical and mechanical influences. Our setup features a compact measurement environment, where sensor operation and data acquisition are integrated into a single device. The experimental results show a good agreement with a simplified analytical model and FEM simulations. The sensor exhibits a lower detection limit of 0.62\% in the case of CO2, and only 0.062\% in case the of H2 at an excitation frequency of 1 Hz. This is one of the lowest values reported in literature for thermal conductivity H2 sensors.}, language = {en} }