@article{TauwaldMichelBrandtetal., author = {Tauwald, Sandra Melina and Michel, Johanna and Brandt, Marie and Vielsmeier, Veronika and Stemmer, Christian and Krenkel, Lars}, title = {Experimental studies and mathematical modeling of the viscoelastic rheology of tracheobronchial mucus from respiratory healthy patients}, series = {Multidisciplinary Respiratory Medicine}, volume = {18}, journal = {Multidisciplinary Respiratory Medicine}, number = {1}, publisher = {PAGEPress}, address = {Pavia, Italy}, issn = {2049-6958}, doi = {10.4081/mrm.2023.923}, pages = {12}, abstract = {BACKGROUND: Tracheobronchial mucus plays a crucial role in pulmonary function by providing protection against inhaled pathogens. Due to its composition of water, mucins, and other biomolecules, it has a complex viscoelastic rheological behavior. This interplay of both viscous and elastic properties has not been fully described yet. In this study, we characterize the rheology of human mucus using oscillatory and transient tests. Based on the transient tests, we describe the material behavior of mucus under stress and strain loading by mathematical models. METHODS: Mucus samples were collected from clinically used endotracheal tubes. For rheological characterization, oscillatory amplitude-sweep and frequency-sweep tests, and transient creep-recovery and stress-relaxation tests were performed. The results of the transient test were approximated using the Burgers model, the Weibull distribution, and the six-element Maxwell model. The three-dimensional microstructure of the tracheobronchial mucus was visualized using scanning electron microscope imaging. RESULTS: Amplitude-sweep tests showed storage moduli ranging from 0.1 Pa to 10000 Pa and a median critical strain of 4 \%. In frequency-sweep tests, storage and loss moduli increased with frequency, with the median of the storage modulus ranging from 10 Pa to 30 Pa, and the median of the loss modulus from 5 Pa to 14 Pa. The Burgers model approximates the viscoelastic behavior of tracheobronchial mucus during a constant load of stress appropriately (R2 of 0.99), and the Weibull distribution is suitable to predict the recovery of the sample after the removal of this stress (R2 of 0.99). The approximation of the stress-relaxation test data by a six-element Maxwell model shows a larger fit error (R2 of 0.91). CONCLUSIONS: This study provides a detailed description of all process steps of characterizing the rheology of tracheobronchial mucus, including sample collection, microstructure visualization, and rheological investigation. Based on this characterization, we provide mathematical models of the rheological behavior of tracheobronchial mucus. These can now be used to simulate mucus flow in the respiratory system through numerical approaches.}, language = {en} } @misc{KrenkelMichelKeiletal., author = {Krenkel, Lars and Michel, Johanna and Keil, Niklas and Daschner, Jan}, title = {Experimental Investigation of Logitudinal Folds in Endotracheal Tube Cuffs and their Correlation to Silent Breathing}, series = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, journal = {23. DGLR Fach-Symposium Str{\"o}mungen mit Abl{\"o}sung, 09./10. November 2022, Berlin, Deutschland}, address = {G{\"o}ttingen}, organization = {Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt e.V. / Arbeitsgemeinschaft Str{\"o}mungen mit Abl{\"o}sung, AG STAB}, abstract = {Air leakage past High-Volume-Low-Pressure (HVLP) endotracheal tube (ETT) cuffs creates a potential infection risk for health care professionals during ventilation of patients suffering from contagious airborne diseases. However, unlike silent aspiration, a phenomenon where fluids enter the airways of intubated patients, the aspect of aerosol emergence through cuff folds -what we called accordingly "silent breathing" (SB)- has not been investigated in detail so far. This study investigates air leakage past HVLP cuffs with varying cuff pressures under realistic artificial breathing scenarios experimentally and in addition numerically. The focus was laid on the parametric investigation of the occurrence and furthermore on different influencing factors of silent breathing. The morphology of the folds responsible for the leakage was captured using high-resolution 3D microcomputed tomography (μCT). For the numerical investigations (Com-putational Fluid Dynamics - CFD), the commercial CFD Software package FLUENT 2021 R2 (ANSYS, Inc., Canonsburg, PA, US), as well as the DLR in-house research code THETA has been used.}, language = {en} } @misc{MichelKrenkel, author = {Michel, Johanna and Krenkel, Lars}, title = {Experimental Investigation of Shear-Induced Generation of Respiratory Aerosol: Simultaneous Measurements of Particle Quantities and Wave Topology}, series = {2nd European Fluid Dynamics Conference (EFDC2), 26-29 August 2025, Dublin, Ireland}, journal = {2nd European Fluid Dynamics Conference (EFDC2), 26-29 August 2025, Dublin, Ireland}, doi = {10.35096/othr/pub-8859}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-88593}, pages = {1}, abstract = {Despite the high level of attention on infectious respiratory aerosol during the Covid19 pandemic, little is known about the processes how these particles form inside the respiratory system. Understanding the underlying fluid mechanical processes and their influencing factors would enable the development of drugs to suppress the generation of infectious aerosol. In the proposed work, we focus on the shear-induced mechanism of aerosol generation, which is supposed to occur mostly in the larger airways during coughing. In this process, high air velocities trigger Kelvin-Helmholtz waves in the mucus film, which lines the air vessels. Through a series of instabilities, particles detach from the crest of these waves. In the proposed work, we investigate the process of shear-induced aerosol generation in idealized experiments where we vary the air-flow characteristics and the properties of the mucus fluid. Our central aim here is to deduct an empirical model of the quantity and size distribution of generated particles depending on the mucus rheology and the local shear flow. Further, we observe the wave topology to better understand the coupling between the air flow and the waves. In our experimental setup, we measure the quantity of created particles and the emerging waves simultaneously. To ensure controllable conditions, we simplify the complex flow conditions in the airways. We use a rectangular channel with the bottom wall covered in a mucus mimetic. The mucus mimetic fluid is a synthetic hydrogel developed to recreate the viscoelastic properties and low surface tensions of the mucus. Filtered pressurized air is guided through the channel to trigger shear-induced aerosol generation. After passing the mucus mimetic, the air enters into a collection chamber from where particles are sampled continuously by an aerosol spectrometer. To measure wave topology, we use planar laser induced fluorescence. For this, we stain the mucus mimetic with fluorescent dyes and illuminate a line on the surface of the fluid film with a 532 nm laser. A high-resolution camera captures the resulting fluorescent glow of the mucus mimetic. Figure 1 presents exemplary wave topology results from the experiments, employing varying air flow volume rates, mucus mimetic gel properties, and different configurations of the laser and camera. The resulting wave topologies exhibit significant variation. For the conference, we will conduct parameter studies of the particle quantities and wave topology while varying the mucus mimetic properties and the flow rate of the air. Additionally, we will present grid projection-based techniques to extend the single-line wave measurements and asses the entire surface of the mucus film.}, language = {en} }