@incollection{JentschTrostSterner, author = {Jentsch, Mareike and Trost, Tobias and Sterner, Michael}, title = {Optimal Use of Power-to-Gas Energy Storage Systems in an 85\% Renewable Energy Scenario}, series = {Energy Procedia}, volume = {46}, booktitle = {Energy Procedia}, publisher = {Elsevier}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.01.180}, pages = {254 -- 261}, abstract = {In future energy systems with high shares of fluctuating renewable energy generation, electricity storage will become increasingly important for the utilization of surplus energy. The Power-to-Gas (PtG) technology is one promising option for solving the challenge of long-term electricity storage and is theoretically able to ease situations of grid congestion at the same time. This article presents the perspectives of PtG in an 85\% renewable energy scenario for Germany, quantifying an economic optimum for the PtG capacity as well as an optimized spatial PtG deployment.}, language = {en} } @techreport{MichaelSternerMareikeJentschUweHolzhammer, author = {Michael Sterner, and Mareike Jentsch, and Uwe Holzhammer,}, title = {Energiewirtschaftliche und {\"o}kologische Bewertung eines Windgas-Angebotes}, publisher = {Fraunhofer Institute for Energy Economics and Energy System Technology}, address = {Kassel}, doi = {10.13140/RG.2.2.25093.68328}, abstract = {In this technical report, (1) the benefits of the new technology for future energy supply are discussed, (2) the climate protection effect of wind gas is discussed, and (3) a reasonable use of wind energy for gas generation is analyzed. In particular, windgas in the heat market is discussed in the utilization cascade of wind energy. The new "power-to-gas" concept opens up completely new possibilities for the integration of renewable energies and for coupling the electricity and gas grids. The Sabatier process, which has been known for 100 years, was first developed for this purpose in 2008 under the leadership of the Center for Solar Energy and Hydrogen Research and Fraunhofer IWES (formerly ISET) with electrolysis to create the "power-to-gas" concept for energy storage. A first pilot plant was built by ZSW Stuttgart on behalf of SolarFuel in 2009. This plant proves the technical feasibility of the new technology. Renewable gas is stored, transported and used as required as control and reserve energy via reconversion, e.g. in combined cycle power plants. In this way, decentrally generated renewable electricity is converted into a CO2 -neutral energy carrier with high energy density. The key advantage of renewable methane is the use of existing infrastructure such as gas grids, gas storage and end-use equipment for the integration of renewable energy. Technologies for natural gas are state of the art and commercially available. Methane also has three times the energy density of hydrogen.}, language = {en} }