@misc{RueckertRiederRauberetal., author = {R{\"u}ckert, Tobias and Rieder, Maximilian and Rauber, David and Xiao, Michel and Humolli, Eg and Feussner, Hubertus and Wilhelm, Dirk and Palm, Christoph}, title = {Augmenting instrument segmentation in video sequences of minimally invasive surgery by synthetic smoky frames}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {18}, journal = {International Journal of Computer Assisted Radiology and Surgery}, number = {Suppl 1}, publisher = {Springer Nature}, doi = {10.1007/s11548-023-02878-2}, pages = {S54 -- S56}, language = {en} } @article{HartwigBerletCzempieletal., author = {Hartwig, Regine and Berlet, Maximilian and Czempiel, Tobias and Fuchtmann, Jonas and R{\"u}ckert, Tobias and Feussner, Hubertus and Wilhelm, Dirk}, title = {Bildbasierte Unterst{\"u}tzungsmethoden f{\"u}r die zuk{\"u}nftige Anwendung in der Chirurgie}, series = {Die Chirurgie}, volume = {93}, journal = {Die Chirurgie}, publisher = {Springer}, doi = {10.1007/s00104-022-01668-x}, pages = {956 -- 965}, abstract = {Hintergrund: Die Entwicklung assistiver Technologien wird in den kommenden Jahren nicht nur in der Chirurgie von zunehmender Bedeutung sein. Die Wahrnehmung der Istsituation stellt hierbei die Grundlage jeder autonomen Handlung dar. Hierf{\"u}r k{\"o}nnen unterschiedliche Sensorsysteme genutzt werden, wobei videobasierte Systeme ein besonderes Potenzial aufweisen. Methode: Anhand von Literaturangaben und auf Basis eigener Forschungsarbeiten werden zentrale Aspekte bildbasierter Unterst{\"u}tzungssysteme f{\"u}r die Chirurgie dargestellt. Hierbei wird deren Potenzial, aber auch die Limitationen der Methoden erl{\"a}utert. Ergebnisse: Eine etablierte Anwendung stellt die Phasendetektion chirurgischer Eingriffe dar, f{\"u}r die Operationsvideos mittels neuronaler Netzwerke analysiert werden. Durch eine zeitlich gest{\"u}tzte und transformative Analyse konnten die Ergebnisse der Pr{\"a}diktion j{\"u}ngst deutlich verbessert werden. Aber auch robotische Kameraf{\"u}hrungssysteme nutzen Bilddaten, um das Laparoskop zuk{\"u}nftig autonom zu navigieren. Um die Zuverl{\"a}ssigkeit an die hohen Anforderungen in der Chirurgie anzugleichen, m{\"u}ssen diese jedoch durch zus{\"a}tzliche Informationen erg{\"a}nzt werden. Ein vergleichbarer multimodaler Ansatz wurde bereits f{\"u}r die Navigation und Lokalisation bei laparoskopischen Eingriffen umgesetzt. Hierzu werden Videodaten mittels verschiedener Methoden analysiert und diese Ergebnisse mit anderen Sensormodalit{\"a}ten fusioniert. Diskussion: Bildbasierte Unterst{\"u}tzungsmethoden sind bereits f{\"u}r diverse Aufgaben verf{\"u}gbar und stellen einen wichtigen Aspekt f{\"u}r die Chirurgie der Zukunft dar. Um hier jedoch zuverl{\"a}ssig und f{\"u}r autonome Funktionen eingesetzt werden zu k{\"o}nnen, m{\"u}ssen sie zuk{\"u}nftig in multimodale Ans{\"a}tze eingebettet werden, um die erforderliche Sicherheit bieten zu k{\"o}nnen.}, language = {de} } @inproceedings{RueckertRiederFeussneretal., author = {R{\"u}ckert, Tobias and Rieder, Maximilian and Feussner, Hubertus and Wilhelm, Dirk and R{\"u}ckert, Daniel and Palm, Christoph}, title = {Smoke Classification in Laparoscopic Cholecystectomy Videos Incorporating Spatio-temporal Information}, series = {Bildverarbeitung f{\"u}r die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2024: Proceedings, German Workshop on Medical Image Computing, March 10-12, 2024, Erlangen}, editor = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, publisher = {Springeer}, address = {Wiesbaden}, doi = {10.1007/978-3-658-44037-4_78}, pages = {298 -- 303}, abstract = {Heavy smoke development represents an important challenge for operating physicians during laparoscopic procedures and can potentially affect the success of an intervention due to reduced visibility and orientation. Reliable and accurate recognition of smoke is therefore a prerequisite for the use of downstream systems such as automated smoke evacuation systems. Current approaches distinguish between non-smoked and smoked frames but often ignore the temporal context inherent in endoscopic video data. In this work, we therefore present a method that utilizes the pixel-wise displacement from randomly sampled images to the preceding frames determined using the optical flow algorithm by providing the transformed magnitude of the displacement as an additional input to the network. Further, we incorporate the temporal context at evaluation time by applying an exponential moving average on the estimated class probabilities of the model output to obtain more stable and robust results over time. We evaluate our method on two convolutional-based and one state-of-the-art transformer architecture and show improvements in the classification results over a baseline approach, regardless of the network used.}, language = {en} } @unpublished{RueckertRauberMaerkletal., author = {R{\"u}ckert, Tobias and Rauber, David and Maerkl, Raphaela and Klausmann, Leonard and Yildiran, Suemeyye R. and Gutbrod, Max and Nunes, Danilo Weber and Moreno, Alvaro Fernandez and Luengo, Imanol and Stoyanov, Danail and Toussaint, Nicolas and Cho, Enki and Kim, Hyeon Bae and Choo, Oh Sung and Kim, Ka Young and Kim, Seong Tae and Arantes, Gon{\c{c}}alo and Song, Kehan and Zhu, Jianjun and Xiong, Junchen and Lin, Tingyi and Kikuchi, Shunsuke and Matsuzaki, Hiroki and Kouno, Atsushi and Manesco, Jo{\~a}o Renato Ribeiro and Papa, Jo{\~a}o Paulo and Choi, Tae-Min and Jeong, Tae Kyeong and Park, Juyoun and Alabi, Oluwatosin and Wei, Meng and Vercauteren, Tom and Wu, Runzhi and Xu, Mengya and an Wang, and Bai, Long and Ren, Hongliang and Yamlahi, Amine and Hennighausen, Jakob and Maier-Hein, Lena and Kondo, Satoshi and Kasai, Satoshi and Hirasawa, Kousuke and Yang, Shu and Wang, Yihui and Chen, Hao and Rodr{\´i}guez, Santiago and Aparicio, Nicol{\´a}s and Manrique, Leonardo and Lyons, Juan Camilo and Hosie, Olivia and Ayobi, Nicol{\´a}s and Arbel{\´a}ez, Pablo and Li, Yiping and Khalil, Yasmina Al and Nasirihaghighi, Sahar and Speidel, Stefanie and R{\"u}ckert, Daniel and Feussner, Hubertus and Wilhelm, Dirk and Palm, Christoph}, title = {Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge}, pages = {36}, abstract = {Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.}, language = {en} } @article{RueckertRauberMaerkletal., author = {Rueckert, Tobias and Rauber, David and Maerkl, Raphaela and Klausmann, Leonard and Yildiran, Suemeyye R. and Gutbrod, Max and Nunes, Danilo Weber and Moreno, Alvaro Fernandez and Luengo, Imanol and Stoyanov, Danail and Toussaint, Nicolas and Cho, Enki and Kim, Hyeon Bae and Choo, Oh Sung and Kim, Ka Young and Kim, Seong Tae and Arantes, Gon{\c{c}}alo and Song, Kehan and Zhu, Jianjun and Xiong, Junchen and Lin, Tingyi and Kikuchi, Shunsuke and Matsuzaki, Hiroki and Kouno, Atsushi and Manesco, Jo{\~a}o Renato Ribeiro and Papa, Jo{\~a}o Paulo and Choi, Tae-Min and Jeong, Tae Kyeong and Park, Juyoun and Alabi, Oluwatosin and Wei, Meng and Vercauteren, Tom and Wu, Runzhi and Xu, Mengya and Wang, An and Bai, Long and Ren, Hongliang and Yamlahi, Amine and Hennighausen, Jakob and Maier-Hein, Lena and Kondo, Satoshi and Kasai, Satoshi and Hirasawa, Kousuke and Yang, Shu and Wang, Yihui and Chen, Hao and Rodr{\´i}guez, Santiago and Aparicio, Nicol{\´a}s and Manrique, Leonardo and Palm, Christoph and Wilhelm, Dirk and Feussner, Hubertus and Rueckert, Daniel and Speidel, Stefanie and Nasirihaghighi, Sahar and Al Khalil, Yasmina and Li, Yiping and Arbel{\´a}ez, Pablo and Ayobi, Nicol{\´a}s and Hosie, Olivia and Lyons, Juan Camilo}, title = {Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge}, series = {Medical Image Analysis}, volume = {109}, journal = {Medical Image Analysis}, publisher = {Elsevier}, issn = {1361-8415}, doi = {10.1016/j.media.2026.103945}, pages = {31}, abstract = {Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.}, language = {en} } @misc{RueckertRauberKlausmannetal., author = {Rueckert, Tobias and Rauber, David and Klausmann, Leonard and Gutbrod, Max and Rueckert, Daniel and Feussner, Hubertus and Wilhelm, Dirk and Palm, Christoph}, title = {PhaKIR Dataset - Surgical Procedure Phase, Keypoint, and Instrument Recognition [Data set]}, doi = {10.5281/zenodo.15740620}, abstract = {Note: A script for extracting the individual frames from the video files while preserving the challenge-compliant directory structure and frame-to-mask naming conventions is available on GitHub and can be accessed here: https://github.com/remic-othr/PhaKIR_Dataset. The dataset is described in the following publications: Rueckert, Tobias et al.: Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge. arXiv preprint, https://arxiv.org/abs/2507.16559. 2025. Rueckert, Tobias et al.: Video Dataset for Surgical Phase, Keypoint, and Instrument Recognition in Laparoscopic Surgery (PhaKIR). arXiv preprint, https://arxiv.org/abs/2511.06549. 2025. The proposed dataset was used as the training dataset in the PhaKIR challenge (https://phakir.re-mic.de/) as part of EndoVis-2024 at MICCAI 2024 and consists of eight real-world videos of human cholecystectomies ranging from 23 to 60 minutes in duration. The procedures were performed by experienced physicians, and the videos were recorded in three hospitals. In addition to existing datasets, our annotations provide pixel-wise instance segmentation masks of surgical instruments for a total of 19 categories, coordinates of relevant instrument keypoints (instrument tip(s), shaft-tip transition, shaft), both at an interval of one frame per second, and specifications regarding the intervention phases for a total of eight different phase categories for each individual frame in one dataset and thus comprehensively cover instrument localization and the context of the operation. Furthermore, the provision of the complete video sequences offers the opportunity to include the temporal information regarding the respective tasks and thus further optimize the resulting methods and outcomes.}, language = {en} }