@article{WidbillerKeimSchlichtingetal., author = {Widbiller, Matthias and Keim, Lukas and Schlichting, Ralf and Striegl, Birgit and Hiller, Karl-Anton and Jungbauer, Rebecca and Buchalla, Wolfgang and Galler, Kerstin M.}, title = {Debris Removal by Activation of Endodontic Irrigants in Complex Root Canal Systems}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {16}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app11167331}, pages = {1 -- 14}, abstract = {Aim of the study was to develop a standardized model system to investigate endodontic irrigation techniques and assess the efficiency of different activation methods on the removal of hard tissue debris in complex root canal systems. Mesial roots of mandibular molars were firstly scanned by micro-computed tomography (µCT) and allocated to three groups of irrigant activation: sonic activation (EDDY, VDW, Munich, Germany), laser activation (AutoSWEEPS, FOTONA, Ljubljana, Slovenia) and conventional needle irrigation (control). Roots were fixed in individual 3D-printed holders to facilitate root canal enlargement under constant irrigation with NaOCl (5\%). To enable standardized quantification of remaining debris, BaSO4-enriched dentine powder was compacted into the canals, followed by another µCT-scan. The final irrigation was performed using 17\% ethylenediaminetetraacetic acid (EDTA) and 5\% sodium hypochlorite (NaOCl) with the respective activation method, and the volume of remaining artificial debris was quantified after a final µCT-scan. The newly developed model system allowed for reliable, reproducible and standardized assessment of irrigation methods. Activation of the irrigant proved to be significantly more effective than conventional needle irrigation regarding the removal of debris, which persisted particularly in the apical third of the root canal in the control group. The efficiency of irrigation was significantly enhanced with laser- and sonic-based activation, especially in the apical third.}, language = {en} } @article{HirmerDanilovGiglbergeretal., author = {Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, Karl-Anton and Schmalz, Gottfried and Redlich, Britta and Schulz, Irene and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality}, series = {Journal of Infrared, Millimeter, and Terahertz Waves}, volume = {33}, journal = {Journal of Infrared, Millimeter, and Terahertz Waves}, publisher = {Springer}, issn = {1866-6906}, doi = {10.1007/s10762-012-9872-3}, pages = {366 -- 375}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @incollection{NiklasHillerJaegeretal., author = {Niklas, Andreas and Hiller, Karl-Anton and J{\"a}ger, Andreas and Brandt, M. and Putzger, J{\"u}rgen and Ermer, C. and Schulz, Irene and Monkman, Gareth J. and Giglberger, Stephan and Hirmer, Marion and Danilov, Sergey N. and Ganichev, Sergey D. and Schmalz, Gottfried}, title = {In vitro optical detection of simulated blood pulse in a human tooth pulp model}, series = {Biocompatibility of Dental Materials}, booktitle = {Biocompatibility of Dental Materials}, editor = {Arenholt-Bindslev, Dorthe and Schmalz, Gottfried}, publisher = {Springer}, address = {Berlin ; Heidelberg}, language = {en} } @misc{HirmerDanilovGiglbergeretal., author = {Hirmer, Marion and Danilov, Sergey N. and Giglberger, Stephan and Putzger, J{\"u}rgen and Niklas, Andreas and J{\"a}ger, Andreas and Hiller, Karl-Anton and Schmalz, Gottfried and Redlich, B. and Monkman, Gareth J. and Ganichev, Sergey D.}, title = {Spectroscopic Study of Human Teeth and Blood from Visible to Terahertz Frequencies for Clinical Diagnosis of Dental Pulp Vitality}, series = {PACS, November 11, 2011}, journal = {PACS, November 11, 2011}, abstract = {Transmission spectra of wet human teeth and dentin slices, together with blood of different flow rates were investigated. The measurements carried out over a wide spectral range, from visible light down to terahertz radiation. The results make it possible to find the optimum light frequency for an all-optical determination of pulpal blood flow and, consequently, for clinically diagnosis of tooth vitality.}, language = {en} } @inproceedings{SchulzPutzgerNiklasetal., author = {Schulz, Irene and Putzger, J{\"u}rgen and Niklas, Andreas and Brandt, M. and J{\"a}ger, Andreas and Hardt, A. and Kn{\"o}rzer, S. and Hiller, Karl-Anton and L{\"o}ffler, S. and Schmalz, Gottfried and Danilov, Sergey N. and Giglberger, Stephan and Hirmer, Marion and Ganichev, Sergey D. and Monkman, Gareth J.}, title = {PPG signal acquisition and analysis on in vitro tooth model for dental pulp vitality assessmen}, series = {2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg}, booktitle = {2nd Applied Research Conference 2012 (ARC 2012), 25./26. June 2012, Nuremberg}, publisher = {Shaker-Verlag}, address = {Aachen}, organization = {ARC}, pages = {142 -- 146}, language = {en} }