@inproceedings{KhaledBruhnsReichlingetal., author = {Khaled, W. and Bruhns, Otto T. and Reichling, S. and B{\"o}se, Holger and Baumann, Michael and Monkman, Gareth J. and Egersd{\"o}rfer, Stefan and Meier, Alexander and Klein, Dagmar and Freimuth, Herbert and Ermert, Helmut}, title = {A haptic system for virtual reality applications based on ultrasound elastography and electrorheological fluids}, series = {Acoustical Imaging (ACIM)}, volume = {27}, booktitle = {Acoustical Imaging (ACIM)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-90-481-6652-7}, issn = {0270-5117}, doi = {10.1007/978-1-4020-2402-3_85}, pages = {667 -- 674}, abstract = {Mechanical properties of biological tissue represent important diagnostic information and are of histological and pathological relevance. Malignant tumors are significantly stiffer and more immobile than surrounding healthy tissue. Hard calcifications in vessels occur due to arteriosclerosis. The problem is, that such information is usually not available or can only be obtained by manual palpation, which is subjective and limited in sensitivity. It requires intuitive assessment and does not allow quantitative documentation. Unfortunately, none of the established medical imaging equipment such as magnetic resonance imaging (MRI) or X-ray computed tomography (CT) can provide direct measure of tissue elasticity. On the one hand a suitable sensor is required for quantitative measurement of mechanical tissue properties. On the other hand there is also some need for a realistic haptic display of such tissue properties. Suitable actuator arrays with high spatial resolution acting in real time are required. A haptic sensor actuator system is presented in this paper including a sensitive sensor part and an actuator array for different applications. The mechanical consistency of an object is to be locally specified using a sensor system and represented perceptibly in a remote position on an actuator system for the user. The sensor system uses ultrasound (US) elastography, whereas the actuator array is based on electrorheological (ER) fluids.}, language = {en} }