@article{KoeckStrieglKrausetal., author = {K{\"o}ck, Hannah and Striegl, Birgit and Kraus, Annalena and Zborilova, Magdalena and Christiansen, Silke H. and Sch{\"a}fer, Nicole and Gr{\"a}ssel, Susanne and Hornberger, Helga}, title = {In Vitro Analysis of Human Cartilage Infiltrated by Hydrogels and Hydrogel-Encapsulated Chondrocytes}, series = {Bioengineering}, volume = {10}, journal = {Bioengineering}, publisher = {MDPI}, doi = {10.3390/bioengineering10070767}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-61235}, pages = {1 -- 21}, abstract = {Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.}, language = {en} } @article{HornbergerStrieglTrahanofskyetal., author = {Hornberger, Helga and Striegl, Birgit and Trahanofsky, M. and Kneissl, F. and Kronseder, Matthias}, title = {Degradation and bioactivity studies of Mg membranes for dental surgery}, series = {Materials Letter X}, volume = {2}, journal = {Materials Letter X}, number = {June}, publisher = {Elsevier}, doi = {10.1016/j.mlblux.2019.100007}, pages = {1 -- 5}, abstract = {Bioresorbable materials are under investigation due to their promising properties for applications as implant material. This study is about the degradation and bioactivity behaviour of magnesium foils, which allegorize dental membranes. The degradation behaviour including pitting corrosion during immersion tests can be precisely observed using micro-computed tomography. Using the bioactivity test according to Kokubo, it is shown that magnesium has strong Ca-phosphate layer formation correlated with high degradation. Therefore, magnesium foils appear to hold a great potential for bone implant application.}, language = {en} }