@article{BauerHamacherBroeeretal., author = {Bauer, Dagmar and Hamacher, Kurt and Br{\"o}er, Stefan and Pauleit, Dirk and Palm, Christoph and Zilles, Karl and Coenen, Heinz H. and Langen, Karl-Josef}, title = {Preferred stereoselective brain uptake of D-serine}, series = {Nuclear Medicine and Biology}, volume = {32}, journal = {Nuclear Medicine and Biology}, number = {8}, doi = {10.1016/j.nucmedbio.2005.07.004}, pages = {793 -- 797}, abstract = {Although it has long been presumed that d-amino acids are uncommon in mammalians, substantial amounts of free d-serine have been detected in the mammalian brain. d-Serine has been demonstrated to be an important modulator of glutamatergic neurotransmission and acts as an agonist at the strychnine-insensitive glycine site of N-methyl-d-aspartate receptors. The blood-to-brain transfer of d-serine is thought to be extremely low, and it is assumed that d-serine is generated by isomerization of l-serine in the brain. Stimulated by the observation of a preferred transport of the d-isomer of proline at the blood-brain barrier, we investigated the differential uptake of [3H]-d-serine and [3H]-l-serine in the rat brain 1 h after intravenous injection using quantitative autoradiography. Surprisingly, brain uptake of [3H]-d-serine was significantly higher than that of [3H]-l-serine, indicating a preferred transport of the d-enantiomer of serine at the blood-brain barrier. This finding indicates that exogenous d-serine may have a direct influence on glutamatergic neurotransmission and associated diseases.}, subject = {Aminos{\"a}uren}, language = {en} }