@inproceedings{WeissGrossmannLeiboldetal., author = {Weiß, Roman and Großmann, Benjamin and Leibold, Marion and Schlegl, Thomas and Wollherr, Dirk and Weiss, Roman and Grossmann, Benjamin}, title = {Modeling and nonlinear control of antagonistically actuating pneumatic artificial muscles}, series = {2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 3-7 July 2017, Munich, Germany}, booktitle = {2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 3-7 July 2017, Munich, Germany}, publisher = {IEEE}, doi = {10.1109/AIM.2017.8014001}, pages = {94 -- 99}, abstract = {This paper discusses modeling and nonlinear control of a joint antagonistically actuated by two pneumatic, artificial muscles. A single model of the whole system is obtained by a combined physical and phenomenological modeling approach. The combined model for the joint, the muscles and the proportional valves results in a nonlinear, affine-in-control system description. The model is used to derive control laws for an input/output linearization approach to linearize the plant. Modeling and parametrization errors are covered via an outer control loop consisting of a state-feedback which is extended by an additional feedback of error integral. Extensive experimental results show the quality of the model and the performance of the respective control laws.}, language = {en} } @inproceedings{BauerGrossmannSchlegletal., author = {Bauer, Gregor and Grossmann, Benjamin and Schlegl, Thomas and Kobayashi, Hiroshi}, title = {Modeling, identification and control of an antagonistically actuated joint for telerobotic systems}, series = {IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 9-12 Nov. 2015, Yokohama, Japan}, booktitle = {IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 9-12 Nov. 2015, Yokohama, Japan}, publisher = {IEEE}, doi = {10.1109/IECON.2015.7392676}, pages = {3696 -- 3701}, abstract = {Within this paper a modeling, identification and control technique for an antagonistically actuated joint consisting of two pneumatically actuated muscles is presented. The antagonistically actuated joint acts as a test bench for control architectures which are going to be used to control an exoskeleton within a telerobotic system. A static and dynamic model of the muscle and the joint is derived and the parameters of the models are identified using a least-squares algorithm. The control architecture, consisting of a inner pressure and an outer position controller is presented. The pressure controller is evaluated using switching valves compared against proportional valves.}, language = {en} }