@article{SavelievGlavanBelanetal., author = {Saveliev, Dmitry V. and Glavan, Gašper and Belan, Viktoria O. and Belyaeva, Inna A. and Fetisov, Leonid Y. and Shamonin (Chamonine), Mikhail}, title = {Resonant Magnetoelectric Effect at Low Frequencies in Layered Polymeric Cantilevers Containing a Magnetoactive Elastomer}, series = {Applied Sciences}, volume = {12}, journal = {Applied Sciences}, number = {4}, publisher = {MPDI}, doi = {10.3390/app12042102}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-30637}, pages = {1 -- 13}, abstract = {In this work, the resonance enhancement of magnetoelectric (ME) coupling at the two lowest bending resonance frequencies was investigated in layered cantilever structures comprising a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. A cantilever was fixed at one end in the horizontal plane and the magnetic field was applied horizontally. Five composite structures, each containing an MAE layer of different thicknesses from 0.85 to 4 mm, were fabricated. The fundamental bending resonance frequency in the absence of a magnetic field varied between roughly 23 and 55 Hz. It decreased with the increasing thickness of the MAE layer, which was explained by a simple theory. The largest ME voltage coefficient of about 7.85 V/A was measured in a sample where the thickness of the MAE layer was ≈2 mm. A significant increase in the bending resonance frequencies in the applied DC magnetic field of 240 kA/m up to 200\% was observed. The results were compared with alternative designs for layered multiferroic structures. Directions for future research were also discussed.}, language = {en} } @article{GlavanKettlBrunhuberetal., author = {Glavan, Gašper and Kettl, Wolfgang and Brunhuber, Alexander and Shamonin (Chamonine), Mikhail and Drevenšek-Olenik, Irena}, title = {Effect of Material Composition on Tunable Surface Roughness of Magnetoactive Elastomers}, series = {Polymers}, volume = {11}, journal = {Polymers}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym11040594}, pages = {1 -- 13}, abstract = {We investigated magnetic-field-induced modifications of the surface roughness of magnetoactive elastomers (MAEs) with four material compositions incorporating two concentrations of ferromagnetic microparticles (70 wt\% and 80 wt\%) and exhibiting two shear storage moduli of the resulting composite material (about 10 kPa and 30 kPa). The analysis was primarily based on spread optical reflection measurements. The surfaces of all four materials were found to be very smooth in the absence of magnetic field (RMS roughness below 50 nm). A maximal field-induced roughness modification (approximately 1 m/T) was observed for the softer material with the lower filler concentration, and a minimal modification (less than 50 nm/T) was observed for the harder material with the higher filler concentration. All four materials showed a significant decrease in the total optical reflectivity with an increasing magnetic field as well. This effect is attributed to the existence of a distinct surface layer that is depleted of microparticles in the absence of a magnetic field but becomes filled with particles in the presence of the field. We analyzed the temporal response of the reflective properties to the switching on and off of the magnetic field and found switching-on response times of around 0.1 s and switching-off response times in the range of 0.3-0.6 s. These observations provide new insight into the magnetic-field-induced surface restructuring of MAEs and may be useful for the development of magnetically reconfigurable elastomeric optical surfaces.}, language = {en} } @article{GlavanSalamonBelyaevaetal., author = {Glavan, Gašper and Salamon, Peter and Belyaeva, Inna A. and Shamonin (Chamonine), Mikhail and Drevensek-Olenik, Irena}, title = {Tunable surface roughness and wettability of a soft magnetoactive elastomer}, series = {Journal of applied polymer science}, volume = {135}, journal = {Journal of applied polymer science}, number = {18}, publisher = {Wiley}, doi = {10.1002/app.46221}, abstract = {Surface topographical modifications of a soft magnetoactive elastomer (MAE) in response to variable applied magnetic field are investigated. The analysis is performed in situ and is based on optical microscopy, spread optical reflection and optical profilometry measurements. Optical profilometry analysis shows that the responsivity of magnetic field-induced surface roughness with respect to external magnetic field is in the range of 1 mu m/T. A significant hysteresis of surface modifications takes place for increasing and decreasing fields. Investigations of shape of sessile water droplets deposited on the MAE surface reveal that field-induced topographical modifications affect the contact angle of water at the surface. This effect is reversible and the responsivity to magnetic field is in the range of 20 degrees/T. Despite the increased surface roughness, the apparent contact angle decreases with increasing field, which is attributed to the field-induced protrusion of hydrophilic microparticles from the surface layer.}, language = {en} } @article{GlavanBelyaevaRuwischetal., author = {Glavan, Gašper and Belyaeva, Inna A. and Ruwisch, Kevin and Wollschlaeger, Joachim and Shamonin (Chamonine), Mikhail}, title = {Magnetoelectric Response of Laminated Cantilevers Comprising a Magnetoactive Elastomer and a Piezoelectric Polymer, in Pulsed Uniform Magnetic Fields}, series = {Sensors}, volume = {21}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s21196390}, pages = {1 -- 19}, abstract = {The voltage response to pulsed uniform magnetic fields and the accompanying bending deformations of laminated cantilever structures are investigated experimentally in detail. The structures comprise a magnetoactive elastomer (MAE) slab and a commercially available piezoelectric polymer multilayer. The magnetic field is applied vertically and the laminated structures are customarily fixed in the horizontal plane or, alternatively, slightly tilted upwards or downwards. Six different MAE compositions incorporating three concentrations of carbonyl iron particles (70 wt\%, 75 wt\% and 80 wt\%) and two elastomer matrices of different stiffness are used. The dependences of the generated voltage and the cantilever's deflection on the composition of the MAE layer and its thickness are obtained. The appearance of the voltage between the electrodes of a piezoelectric material upon application of a magnetic field is considered as a manifestation of the direct magnetoelectric (ME) effect in a composite laminated structure. The ME voltage response increases with the increasing total quantity of the soft-magnetic filler in the MAE layer. The relationship between the generated voltage and the cantilever's deflection is established. The highest observed peak voltage around 5.5 V is about 8.5-fold higher than previously reported values. The quasi-static ME voltage coefficient for this type of ME heterostructures is about 50 V/A in the magnetic field of approximate to 100 kA/m, obtained for the first time. The results could be useful for the development of magnetic field sensors and energy harvesting devices relying on these novel polymer composites.}, language = {en} } @article{GlavanBelyaevaShamoninChamonine, author = {Glavan, Gašper and Belyaeva, Inna A. and Shamonin (Chamonine), Mikhail}, title = {Multiferroic Cantilevers Containing a Magnetoactive Elastomer: Magnetoelectric Response to Low-Frequency Magnetic Fields of Triangular and Sinusoidal Waveform}, series = {Sensors}, volume = {22}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s22103791}, pages = {1 -- 17}, abstract = {In this work, multiferroic cantilevers comprise a layer of a magnetoactive elastomer (MAE) and a commercially available piezoelectric polymer-based vibration sensor. The structures are fixed at one end in the horizontal plane and the magnetic field is applied vertically. First, the magnetoelectric (ME) response to uniform, triangle-wave magnetic fields with five different slew rates is investigated experimentally. Time and field dependences of the generated voltage, electric charge, and observed mechanical deflection are obtained and compared for four different thicknesses of the MAE layer. The ME responses to triangular and sinusoidal wave excitations are examined in contrast. Second, the ME response at low frequencies (≤3 Hz) is studied by the standard method of harmonic magnetic field modulation. The highest ME coupling coefficient is observed in the bias magnetic field strength of ≈73 kA/m and it is estimated to be about 3.3 ns/m (ME voltage coefficient ≈ 25 V/A) at theoretically vanishing modulation frequency (f→0 Hz). Presented results demonstrate that the investigated heterostructures are promising for applications as magnetic-field sensors and energy harvesting devices.}, language = {en} } @misc{PershinaSavelievGlavanetal., author = {Pershina, K. V. and Saveliev, Dmitry V. and Glavan, Gašper and Chashin, Dmitri V. and Belyaeva, Inna A. and Fetisov, Leonid Y. and Shamonin (Chamonine), Mikhail}, title = {The voltage response of a structure comprising a magnetoactive-elastomer cylinder and a piezoelectric material to magnetic field step excitations}, series = {The 4th International Baltic Conference on Magnetism (IBCM 2021) : Svetlogorsk, Russia August 29 - September 2, 2021 : Book of Abstracts}, journal = {The 4th International Baltic Conference on Magnetism (IBCM 2021) : Svetlogorsk, Russia August 29 - September 2, 2021 : Book of Abstracts}, publisher = {Immanuel Kant Baltic Federal University, Kaliningrad, Russia}, pages = {182}, language = {en} } @article{LovšinBrandlGlavanetal., author = {Lovšin, Matija and Brandl, Dominik and Glavan, Gašper and Belyaeva, Inna A. and Cmok, Luka and Coga, Lucija and Kalin, Mitjan and Shamonin (Chamonine), Mikhail and Drevenšek-Olenik, Irena}, title = {Reconfigurable Surface Micropatterns Based on the Magnetic Field-Induced Shape Memory Effect in Magnetoactive Elastomers}, series = {Polymers}, volume = {13}, journal = {Polymers}, number = {24}, publisher = {MDPI}, doi = {10.3390/polym13244422}, abstract = {A surface relief grating with a period of 30 mu m is embossed onto the surface of magnetoactive elastomer (MAE) samples in the presence of a moderate magnetic field of about 180 mT. The grating, which is represented as a set of parallel stripes with two different amplitude reflectivity coefficients, is detected via diffraction of a laser beam in the reflection configuration. Due to the magnetic-field-induced plasticity effect, the grating persists on the MAE surface for at least 90 h if the magnetic field remains present. When the magnetic field is removed, the diffraction efficiency vanishes in a few minutes. The described effect is much more pronounced in MAE samples with larger content of iron filler (80 wt\%) than in the samples with lower content of iron filler (70 wt\%). A simple theoretical model is proposed to describe the observed dependence of the diffraction efficiency on the applied magnetic field. Possible applications of MAEs as magnetically reconfigurable diffractive optical elements are discussed. It is proposed that the described experimental method can be used as a convenient tool for investigations of the dynamics of magnetically induced plasticity of MAEs on the micrometer scale.}, language = {en} } @article{GlavanBelyaevaDrevenšekOleniketal., author = {Glavan, Gašper and Belyaeva, Inna A. and Drevenšek-Olenik, Irena and Shamonin (Chamonine), Mikhail}, title = {Experimental study of longitudinal, transverse and volume strains of magnetoactive elastomeric cylinders in uniform magnetic fields}, series = {Journal of Magnetism and Magnetic Materials}, volume = {579}, journal = {Journal of Magnetism and Magnetic Materials}, publisher = {Elsevier}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2023.170826}, abstract = {Magnetoactive elastomers (MAEs) are promising materials for realization of magnetic field-controlled soft actuators. Herein, a systematic investigation of magnetic field-induced macroscopic deformations of soft MAE cylinders with a diameter of 15 mm in uniform quasi-static magnetic fields directed parallel to the cylinder's axis is reported. The measurements were based on image processing. Thirty-six MAE samples differing in the weight fraction of the iron filler (70 wt\%, 75 wt\% and 80 wt\%), alignment of filling particles, and the aspect ratio (0.2, 0.4, 0.6, 0.8, 1.0 and 1.2) were fabricated. MAE cylinders exhibited high relative change in height (up to 35\% in the field of 485 kA/m) and lateral contraction. The dependence of the maximum extensional strain on the aspect ratio was obtained and compared with theoretical considerations. A concave dent was formed on the free circular base in magnetic fields. This concavity was characterized experimentally. A significant volumetric strain of the order of magnitude of 10\% was calculated in MAEs for the first time. In consequently repeated magnetization cycles, the remanent extensional strain significantly increased after each cycle. The results are qualitatively discussed in the framework of the modern views on the magnetically induced macroscopic deformations of MAEs. The directions of further research are outlined.}, language = {en} } @article{KravanjaKrieglHribaretal., author = {Kravanja, Gaia and Kriegl, Raphael and Hribar, Luka and Glavan, Gašper and Drevenšek-Olenik, Irena and Shamonin (Chamonine), Mikhail and Jezeršek, Matija}, title = {Magnetically Actuated Surface Microstructures for Efficient Transport and Tunable Separation of Droplets and Solids}, series = {Advanced Engineering Materials}, volume = {25}, journal = {Advanced Engineering Materials}, number = {22}, publisher = {Wiley-VCH}, issn = {1527-2648}, doi = {10.1002/adem.202301000}, pages = {1 -- 11}, abstract = {Efficient transportation of droplets (∽10 ¹ ̶̶̶̶ 10 ² µl) and small solid objects (∽10 ¹ ̶ 10 ² mm ³ ) have important applications in many fields, such as microfluidics, lab-on-a-chip devices, drug delivery, etc. A novel multifunctional surface consisting of a periodic array of micro-lamellae from a soft magnetoactive elastomer (MAE) on a plastic substrate is reported for these purposes. The physical origin of the propulsion is the bending of soft magnetic lamellae in non-uniform magnetic fields, which is also observed in uniform magnetic fields. The magnetoactive surface is fabricated using a facile and rapid method of laser ablation. The propulsion of items is realized using a four-pole rotating magnet. This results in a cyclic lamellar fringe motion over the micro-structured surface and brings an advantage of easy reciprocation of transport by rotation reversal. Two modes of object transportation are identified: "pushing" mode for precise control of droplet and solid positioning and "bouncing" mode for heavier solid objects transportation. A water droplet of 5 μl or a glass sphere with a 2.1 mm diameter can be moved at a maximum speed of 60 mm s ⁻¹ . The multifunctionality of the proposed mechatronic platform is demonstrated on the examples of selective solid-liquid separation and droplet merging.}, language = {en} } @article{GlavanBelyaevaShamoninChamonine, author = {Glavan, Gašper and Belyaeva, Inna and Shamonin (Chamonine), Mikhail}, title = {Transient Response of Macroscopic Deformation of Magnetoactive Elastomeric Cylinders in Uniform Magnetic Fields}, series = {Polymers}, volume = {16}, journal = {Polymers}, number = {5, Special Issue Magnetic Polymer Composites: Design and Application II}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2073-4360}, doi = {10.3390/polym16050586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-71067}, pages = {17}, abstract = {Significant deformations of bodies made from compliant magnetoactive elastomers (MAE) in magnetic fields make these materials promising for applications in magnetically controlled actuators for soft robotics. Reported experimental research in this context was devoted to the behaviour in the quasi-static magnetic field, but the transient dynamics are of great practical importance. This paper presents an experimental study of the transient response of apparent longitudinal and transverse strains of a family of isotropic and anisotropic MAE cylinders with six different aspect ratios in time-varying uniform magnetic fields. The time dependence of the magnetic field has a trapezoidal form, where the rate of both legs is varied between 52 and 757 kA/(s·m) and the maximum magnetic field takes three values between 153 and 505 kA/m. It is proposed to introduce four characteristic times: two for the delay of the transient response during increasing and decreasing magnetic field, as well as two for rise and fall times. To facilitate the comparison between different magnetic field rates, these characteristic times are further normalized on the rise time of the magnetic field ramp. The dependence of the normalized characteristic times on the aspect ratio, the magnetic field slew rate, maximum magnetic field values, initial internal structure (isotropic versus anisotropic specimens) and weight fraction of the soft-magnetic filler are obtained and discussed in detail. The normalized magnetostrictive hysteresis loop is introduced, and used to explain why the normalized delay times vary with changing experimental parameters.}, language = {en} }