@article{MikhaeilNowakPalombaetal., author = {Mikhaeil, Makram and Nowak, Sebastian and Palomba, Valeria and Frazzica, Andrea and Gaderer, Matthias and Dawoud, Belal}, title = {Experimental and analytical investigation of applying an asymmetric plate heat exchanger as an evaporator in a thermally driven adsorption appliance}, series = {Applied Thermal Engineering}, journal = {Applied Thermal Engineering}, number = {228}, publisher = {Elsevier}, doi = {10.1016/j.applthermaleng.2023.120525}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-61115}, abstract = {This communication presents an experimental and analytical study on the evaporation mechanism in a closed-structured asymmetric plate heat exchanger (PHE) employed as a stagnant water evaporator for the application in an adsorption heat transformation appliance. To this aim, an experimental unit is constructed, which comprises two identical PHEs, one acting as an vaporator/condenser and the second, as an adsorber/desorber. Two endoscopes are mounted inside the investigated evaporator to visualize the evaporation mechanism when performing adsorption-evaporation processes under different boundary conditions. It turned out that the evaporation mechanism is a partially covered, thin film evaporation. A heat transfer analysis is performed to evaluate the heat transfer coefficient of the thin film evaporation () inside the investigated evaporator, resulting in -values between 1330 and 160 [W∙m-2∙K-1] over the investigated adsorption-evaporation time. Correlating the obtained () to the film thickness and the wetted area results in -values between 0.34 and 0.78 [mm] and wetted to total area ratios of 0.78 to 0.16. Besides, an analytical model has been developed and introduced to correlate the overall evaporator heat transfer coefficient with the adsorption potential and the time rate of change of the water uptake.}, language = {en} } @article{MikhaeilGadererDawoud, author = {Mikhaeil, Makram and Gaderer, Matthias and Dawoud, Belal}, title = {On the development of an innovative adsorber plate heat exchanger for adsorption heat transformation processes; an experimental and numerical study}, series = {Energy}, volume = {207}, journal = {Energy}, number = {September}, publisher = {Elsevier}, doi = {10.1016/j.energy.2020.118272}, pages = {1 -- 13}, abstract = {An innovative adsorber plate heat exchanger (APHE), which is developed for application in adsorption heat pumps, chillers and thermal energy storage systems, is introduced. A test frame has been constructed as a representative segment of the introduced APHE for applying loose grains of AQSOA-Z02. Adsorption kinetic measurements have been carried out in a volumetric large-temperature-jump setup under typical operating conditions of adsorption processes. A transient 2-D model is developed for the tested sample inside the setup. The measured temporal uptake variations with time have been fed to the model, through which a micro-pore diffusion coefficient at infinite temperature of 2 E-4 [m2s-1] and an activation energy of 42.1 [kJ mol-1] have been estimated. A 3-D model is developed to simulate the combined heat and mass transfer inside the APHE and implemented in a commercial software. Comparing the obtained results with the literature values for an extruded aluminium adsorber heat exchanger coated with a 500 μm layer of the same adsorbent, the differential water uptake obtained after 300 s of adsorption (8.2 g/100 g) implies a sound enhancement of 310\%. This result proves the great potential of the introduced APHE to remarkably enhance the performance of adsorption heat transformation appliances.}, language = {en} } @article{SchwanzerSchillingerMieslingeretal., author = {Schwanzer, Peter and Schillinger, Maximilian and Mieslinger, Johann and Walter, Stefanie and Hagen, Gunter and Maerkl, Susanne and Haft, Gerhard and Dietrich, Markus and Moos, Ralf and Gaderer, Matthias and Rabl, Hans-Peter}, title = {A Synthetic Ash-Loading Method for Gasoline Particulate Filters with Active Oil Injection}, series = {SAR International Journal of Engines}, volume = {14}, journal = {SAR International Journal of Engines}, number = {4}, publisher = {SAE International}, issn = {1946-3936}, doi = {10.4271/03-14-04-0029}, pages = {493 -- 506}, abstract = {To reduce particulate emissions, the use of particulate filters in diesel engines is meanwhile state of the art, while the integration of such systems in gasoline engines is now also necessary in order to comply with today's regulations. Over its lifetime, a gasoline particulate filter (GPF) collects ash components of fuel, lubrication oil, and materials originating from the catalytic coating and from engine abrasion. In the development and application process, synthetic ashing from GPFs is challenging. The ash of the lubrication oil can be increased in various ways, like oil-doped fuel, a separate oil burner, or changes in the piston-cylinder system of the engine. However, these methods show major disadvantages. For this reason, an improved approach is presented in this study, which allows a quick response to changes in combustion (e.g., engine knocking) and producing ash, which is more realistic due to its primary particle size and the density of ash plugs, in a shorter time. Therefore, an approach to accelerate ash loading by active oil injection using a multi-point injection (MPI) system is introduced. With the help of this methodology, an ashing capacity of 1.21 g/h is implemented, which is a high rate compared to other investigations. The primary particle size (evaluated by means of a transmission electron microscope), is in the same size range as those detected at the full-load curve during regular operation. A computer tomographic (CT) analysis of the incinerated particulate filter also shows that a very high density of ash plugs can be realized, which has also been found in the literature for real applications. In addition, with the help of a mass spectrometer (MS) and an intermediate weighing of the particulate filter, the current ash loading of the GPF could be determined with an accuracy of 1\%.}, language = {en} }