@article{GamischGadererDawoud, author = {Gamisch, Bernd and Gaderer, Matthias and Dawoud, Belal}, title = {On the Development of Thermochemical Hydrogen Storage: An Experimental Study of the Kinetics of the Redox Reactions under Different Operating Conditions}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app11041623}, pages = {1 -- 15}, abstract = {This work aims at investigating the reduction/oxidation (redox) reaction kinetics on iron oxide pellets under different operating conditions of thermochemical hydrogen storage. In order to reduce the iron oxide pellets (90\% Fe2O3, 10\% stabilizing cement), hydrogen (H2) is applied in different concentrations with nitrogen (N2), as a carrier gas, at temperatures between between 700 ∘C and 900 ∘C, thus simulating the charging phase. The discharge phase is triggered by the flow of a mixture out of steam (H2O) and N2 at different concentrations in the same temperature range, resulting in the oxidizing of the previously reduced pellets. All investigations were carried out in a thermo-gravimetric analyzer (TGA) with a flow rate of 250mL/min. To describe the obtained kinetic results, a simplified analytical model, based on the linear driving force model, was developed. The investigated iron oxide pellets showed a stable redox performance of 23.8\% weight reduction/gain, which corresponds to a volumetric storage density of 2.8kWh/(L bulk), also after the 29 performed redox cycles. Recalling that there is no H2 stored during the storage phase but iron, the introduced hydrogen storage technology is deemed very promising for applications in urban areas as day-night or seasonal storage for green hydrogen.}, language = {en} } @article{GamischHuberGadereretal., author = {Gamisch, Bernd and Huber, Lea and Gaderer, Matthias and Dawoud, Belal}, title = {On the Kinetic Mechanisms of the Reduction and Oxidation Reactions of Iron Oxide/Iron Pellets for a Hydrogen Storage Process}, series = {Energies}, volume = {15}, journal = {Energies}, number = {21}, publisher = {MDPI}, doi = {10.3390/en15218322}, abstract = {This work aims at investigating the kinetic mechanisms of the reduction/oxidation (redox) reactions of iron oxide/iron pellets under different operating conditions. The reaction principle is the basis of a thermochemical hydrogen storage system. To simulate the charging phase, a single pellet consisting of iron oxide (90\% Fe2O3, 10\% stabilising cement) is reduced with different hydrogen (H2) concentrations at temperatures between 600 and 800 °C. The discharge phase is initiated by the oxidation of the previously reduced pellet by water vapour (H2O) at different concentrations in the same temperature range. In both reactions, nitrogen (N2) is used as a carrier gas. The redox reactions have been experimentally measured in a thermogravimetric analyser (TGA) at a flow rate of 250 mL/min. An extensive literature review has been conducted on the existing reactions' kinetic mechanisms along with their applicability to describe the obtained results. It turned out that the measured kinetic results can be excellently described with the so-called shrinking core model. Using the geometrical contracting sphere reaction mechanism model, the concentration- and temperature-dependent reduction and oxidation rates can be reproduced with a maximum deviation of less than 5\%. In contrast to the reduction process, the temperature has a smaller effect on the oxidation reaction kinetics, which is attributed to 71\% less activation energy (Ea,Re=56.9 kJ/mol versus Ea,Ox=16.0 kJ/mol). The concentration of the reacting gas showed, however, an opposite trend: namely, to have an almost twofold impact on the oxidation reaction rate constant compared to the reduction rate constant.}, language = {en} } @article{GamischEttengruberGadereretal., author = {Gamisch, Bernd and Ettengruber, Stefan and Gaderer, Matthias and Dawoud, Belal}, title = {Dynamic simulation of isothermal and non-isothermal reduction and oxidation reactions of iron oxide for a hydrogen storage process}, series = {Renewable and Sustainable Energy}, volume = {1}, journal = {Renewable and Sustainable Energy}, number = {1}, publisher = {ELSP, International Open Science Platform}, doi = {10.55092/rse20230004}, abstract = {This work aims first to develop a dynamic lumped model for the isothermal reactions of hydrogen/steam with a single iron oxide/iron pellet inside a tubular reactor and to validate the model results against the experimental reaction kinetic data with the help of our STA device. To describe the temporal change in mass, and consequently, the temporal heat of reaction, the shrinking core model, based on the geometrical contracting sphere, is applied. It turned out that, the simulation model can reproduce the experimental, temporal concentration and temperature-dependent conversion rates with a maximum deviation of 4.6\% during the oxidation reactions and 3.1\% during the reduction reactions. In addition, a measured isothermal storage process comprising one reduction and one oxidation phase with a holding phase in between on a single reacting pellet could be reproduced with a maximum absolute deviation in the conversion rate of 1.5\%. Moreover, a lumped, non-isothermal simulation model for a pelletized tubular redox-reactor including 2kg of iron oxide pellets has been established, in which the heat of reaction, heat transfer to the ambient and heat transfer between the solid and gas phases are considered. The temporal courses of the outlet gas concentration as well as the temperatures of the gas stream and the solid material at a constant input gas flow rate and a constant reacting gas inlet concentration but different input gas temperatures are estimated. Because of the endothermic nature of the reduction reaction, the inlet reacting gas temperature shall be kept high to prevent the severe temperature drop in the solid phase and, consequently, the significant reduction of the reaction rate. Contrary to that, the oxidation process requires lower input gas temperatures to avoid the excessive overheating of the reaction mass and, consequently, the sintering of the reacting pellets. Finally, five of the previous reactors have been connected in series to explore the influence of the changing inlet gas temperatures and concentrations on the dynamic performance of each storage mass.}, language = {en} }