@article{EbigboMendelScheppachetal., author = {Ebigbo, Alanna and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Shahidi, Neal and Prinz, Friederike and Fleischmann, Carola and R{\"o}mmele, Christoph and G{\"o}lder, Stefan Karl and Braun, Georg and Rauber, David and R{\"u}ckert, Tobias and De Souza Jr., Luis Antonio and Papa, Jo{\~a}o Paulo and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm}, series = {Gut}, volume = {71}, journal = {Gut}, number = {12}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2021-326470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54293}, pages = {2388 -- 2390}, abstract = {In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63\% and 76\%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85\% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.}, language = {en} }