@inproceedings{AurbachWagnerSuessetal., author = {Aurbach, Maximilian and Wagner, Kilian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Implementation and Validation of Human Kinematics Measured Using IMUs for Musculoskeletal Simulations by the Evaluation of Joint Reaction Forces}, series = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina}, volume = {Vol. 62}, booktitle = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina}, editor = {Badnjevic, Almir}, publisher = {Springer}, address = {Singapore}, doi = {10.1007/978-981-10-4166-2_31}, pages = {205 -- 211}, abstract = {The gold standard for the analysis of human kinematics and kinetics is a camera-based motion capture system in combination with force measurement platforms. Alternatively, inertial measurement units can be utilized to obtain human kinematics, while ground reaction forces are computed from full body dynamics. This setup represents a system independent from the spatial confinement of a gait laboratory. The aim of this study is the comparison of the two methods by the investigation of lower limb kinematics and the resulting joint reaction forces within the ankle-, knee- and hip joints. For this purpose, human motion during gait was captured simultaneously by both measurement techniques. 13 trials from 8 different test subjects were evaluated in total. IMU data was processed with a quaternion based Kalman Filter. The data sets were implemented into a musculoskeletal simulation program in order to drive a virtual human body model. Each sensor was aligned to the gravitational and magnetic field vectors of the earth. The angles of flexions, extensions and rotations were analyzed to determine kinematic differences. Joint reaction forces defined kinetic dissimilarities. The overall kinematic differences of both models yielded root mean square errors of 7.62°, 6.02°, 4.95°, 2.79°, 2.38° and 3.56° for ankle flexion, subtalar eversion, knee flexion, hip external rotation, hip abduction and hip flexion, respectively. The proximo-distal differences in force peaks between the models yielded overall for the ankle, 57.33 \%Bodyweight(BW) ± 46.86 \%BW (16.66 \%(Maximum peak to peak) ± 13.62 \%) for the knee 37.09 \%BW ± 29.33 \%BW (17.65 \% ± 15.44 \%) and 32.03 \%BW ± 24.33 \%BW (15.6 \% ± 12.54 \%) for the hip. The overall outcome of this work investigated an approach independent of the common setup of the gait laboratory, thus enabling a cheaper and more flexible technology as an alternative. However, kinematic and thus kinetic differences remain rather large. Future work aims to improve the contact criterion for the calculation of the ground reaction forces and the implementation of a full-body calibration algorithm for the IMU system in order to counteract magnetic field disturbances.}, subject = {Bewegungsapparat}, language = {en} } @inproceedings{PillingSuessKubowitschetal., author = {Pilling, A. and S{\"u}ß, Franz and Kubowitsch, Simone and Dendorfer, Sebastian}, title = {Experimental workflow for determining psychological stress from physiological biosignals}, series = {Jahrestagung der BIOMEDIZINISCHEN TECHNIK und Dreil{\"a}ndertagung der MEDIZINISCHEN PHYSIK, Dresden, Germany, 2017}, booktitle = {Jahrestagung der BIOMEDIZINISCHEN TECHNIK und Dreil{\"a}ndertagung der MEDIZINISCHEN PHYSIK, Dresden, Germany, 2017}, language = {en} } @inproceedings{GrossSuessVerkerkeetal., author = {Gross, Simon and S{\"u}ß, Franz and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Simulating fatigue in musculoskeletal models using surface electromyography, ECCOMAS Congress, Crete, Greece, 201}, series = {ECCOMAS Congress, Crete, Greece, 2016}, booktitle = {ECCOMAS Congress, Crete, Greece, 2016}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of stress on spinal loading}, series = {ESEM webconference, Dez. 2017}, booktitle = {ESEM webconference, Dez. 2017}, language = {en} } @article{AuerKurbowitschSuessetal., author = {Auer, Simon and Kurbowitsch, Simone and S{\"u}ß, Franz and Renkawitz, Tobias and Krutsch, Werner and Dendorfer, Sebastian}, title = {Mental stress reduces performance and changes musculoskeletal loading in football-related movements}, series = {Science and Medicine in Football}, volume = {5}, journal = {Science and Medicine in Football}, number = {4}, publisher = {Taylor \& Francis}, doi = {10.1080/24733938.2020.1860253}, pages = {323 -- 329}, abstract = {Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials \& methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10\% longer running times under stress (p < 0.001, d = -1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players' performance and changes in muscle force.}, language = {en} } @inproceedings{JungtaeublAurbachMelzneretal., author = {Jungt{\"a}ubl, Dominik and Aurbach, Maximilian and Melzner, Maximilian and Spicka, Jan and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {EMG-Based Validation of Musculoskeletal Models Considering Crosstalk}, series = {International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland}, booktitle = {International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland}, doi = {10.1109/BIOMDLORE.2018.8467211}, abstract = {BACKGROUND: Validation and verification of multibody musculoskeletal models sEMG is a difficult process because of the reliability of sEMG data and the complex relationship of muscle force and sEMG. OBJECTIVE: This work aims at comparing experimentally recorded and simulated muscle activities considering a numerical model for crosstalk. METHODS: For providing an experimentally derived reference data set, subjects were performing elevations of the arm, where the activities of the contemplated muscle groups were measured by sEMG sensors. Computed muscle activities were further processed and transformed into an artificial electromyographical signal, which includes a numerical crosstalk model. In order to determine whether the crosstalk model provides a better agreement with the measured muscle activities, the Pearson correlation coefficient has been computed as a qualitative way of assessing the curve progression of the data sets. RESULTS: The results show an improvement in the correlation coefficient between the experimental data and the simulated muscle activities when taking crosstalk into account. CONCLUSIONS: Although the correlation coefficient increased when the crosstalk model was utilized, it is questionable if the discretization of both, the crosstalk and the musculoskeletal model, is accurate enough.}, language = {en} } @misc{MelznerPfeiferAltetal., author = {Melzner, Maximilian and Pfeifer, Christian and Alt, V. and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {{\"A}nderung der Gelenkreaktionskraft bei Sch{\"a}digung des medialen Bandapparates im Ellenbogen}, series = {Zeitschrift fur Orthopadie und Unfallchirurgie}, volume = {158}, journal = {Zeitschrift fur Orthopadie und Unfallchirurgie}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0040-1717270}, language = {de} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of mental stress on spinal disc loading and muscle activity}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{SuessKubowitschRasmussenetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Rasmussen, John and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of cognitive stress on muscle activation and spinal disc load}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, booktitle = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @inproceedings{KubowitschSuessJansenetal., author = {Kubowitsch, Simone and S{\"u}ß, Franz and Jansen, Petra and Dendorfer, Sebastian}, title = {Comparison of dynamic muscular imbalances in back pain patients and healthy controls}, series = {World Congress Biomechanics Dublin, 2018}, booktitle = {World Congress Biomechanics Dublin, 2018}, language = {en} } @inproceedings{KubowitschSuessJansenetal., author = {Kubowitsch, Simone and S{\"u}ß, Franz and Jansen, Petra and Dendorfer, Sebastian}, title = {Muscular imbalances during experimentally induced stress}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @misc{AurbachSpickaSuessetal., author = {Aurbach, Maximilian and Spicka, Jan and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal modelling of the shoulder - effects on muscle recruitment and joint reaction force}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @misc{KubowitschSuessJansenetal., author = {Kubowitsch, Simone and S{\"u}ß, Franz and Jansen, Petra and Dendorfer, Sebastian}, title = {Effect of dual tasking on muscular imbalances}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @misc{AurbachSuessDendorfer, author = {Aurbach, Maximilian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {The impact of the hill type muscle model on the glenohumeral joint reaction force}, series = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, journal = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of cognitive stress induced changes in spinal disc forces due to altered kinematics and muscle activity}, series = {World Congress Biomechanics, Dublin, 2018}, booktitle = {World Congress Biomechanics, Dublin, 2018}, language = {en} } @inproceedings{SuessPutzerDendorfer, author = {S{\"u}ß, Franz and Putzer, Michael and Dendorfer, Sebastian}, title = {Numerische und experimentelle Untersuchungen an der Wirbels{\"a}ule}, series = {Forschungssymposium Bad Abbach, Germany, 2015}, booktitle = {Forschungssymposium Bad Abbach, Germany, 2015}, language = {de} } @article{AuerKrutschRenkawitzetal., author = {Auer, Simon and Krutsch, Werner and Renkawitz, Tobias and Kubowitsch, Simone and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Kognitiver Stress f{\"u}hrt zu unphysiologisch erh{\"o}hten Kniebelastungen im Profifußball}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {2}, publisher = {Elsevier}, doi = {10.1016/j.orthtr.2020.04.122}, pages = {202 -- 203}, language = {de} } @misc{KoeglerIsmailRusavyetal., author = {K{\"o}gler, Michael and Ismail, Khaled M. and Rusavy, Zdenek and Kalis, Vladimir and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Influence of bed height and stance on accoucheurs lower back and glenohumeral load during simulated childbirth}, series = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, journal = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, language = {en} } @misc{AuerKrutschRenkawitzetal., author = {Auer, Simon and Krutsch, Werner and Renkawitz, Tobias and Kubowitsch, Simone and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Effect of mental demand on leg loading in highly dynamic motion}, series = {AnyBody online Webinar, Oct 2020}, journal = {AnyBody online Webinar, Oct 2020}, abstract = {Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury.}, language = {en} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Comparing calculated and measured muscle activity of thigh muscles in dynamic motion.}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {640}, language = {en} } @article{MelznerIsmailRušavyetal., author = {Melzner, Maximilian and Ismail, Khaled and Rušavy, Zdenek and Kališ, Vladim{\´i}r and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal lower back load of accoucheurs during childbirth - A pilot and feasibility study}, series = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, journal = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, number = {264}, publisher = {Elsevier}, doi = {10.1016/j.ejogrb.2021.07.042}, pages = {306 -- 313}, abstract = {Introduction: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. Methods: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. Results: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. Conclusion: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system.}, language = {en} } @article{FoerstlSuessEnglertetal., author = {F{\"o}rstl, Nikolas and S{\"u}ß, Franz and Englert, Carsten and Dendorfer, Sebastian}, title = {Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning}, series = {Medical Engineering \& Physics}, volume = {121}, journal = {Medical Engineering \& Physics}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.medengphy.2023.104059}, pages = {22}, abstract = {To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments.}, language = {en} } @unpublished{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, publisher = {Center for Open Science}, doi = {10.31219/osf.io/dcqyg}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact ontheir quality of life. The aim of this review was to provide a general overview of the current state oftechnology used to assess pelvic floor functionality. It also provides literature research of the phys-iological and anatomical factors that correlate with pelvic floor health. The systematic review wasconducted according to the PRISMA guidelines. PubMed, ScienceDirect, Cochrane Library andIEEE databases were searched for publications on sensor technology for the assessment of pelvicfloor functionality. Anatomical and physiological parameters were identified through a manualsearch. In the systematic review 115 publications were included. 12 different sensor technologieswere identified. Information on the obtained parameters, sensor position, test activities and subjectcharacteristics were prepared in tabular form from each publication. 16 anatomical and physiologi- cal parameters influencing pelvic floor health were identified in 17 published studies and rankedfor their statistical significance. Taken together, this review could serve as a basis for the develop-ment of novel sensors which could allow for quantifiable prevention and diagnosis, as well as par-ticularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @article{AuerSuessDendorfer, author = {Auer, Simon and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics}, series = {Technology and Health Care}, journal = {Technology and Health Care}, publisher = {IOS Press}, issn = {0928-7329}, doi = {10.3233/THC-240202}, pages = {1 -- 10}, abstract = {BACKGROUND: This study presents a comprehensive comparison between a marker-based motion capture system (MMC) and a video-based motion capture system (VMC) in the context of kinematic analysis using musculoskeletal models. OBJECTIVE: Focusing on joint angles, the study aimed to evaluate the accuracy of VMC as a viable alternative for biomechanical research. METHODS: Eighteen healthy subjects performed isolated movements with 17 joint degrees of freedom, and their kinematic data were collected using both an MMC and a VMC setup. The kinematic data were entered into the AnyBody Modelling System, which enables the calculation of joint angles. The mean absolute error (MAE) was calculated to quantify the deviations between the two systems. RESULTS: The results showed good agreement between VMC and MMC at several joint angles. In particular, the shoulder, hip and knee joints showed small deviations in kinematics with MAE values of 4.8∘, 6.8∘ and 3.5∘, respectively. However, the study revealed problems in tracking hand and elbow movements, resulting in higher MAE values of 13.7∘ and 27.7∘. Deviations were also higher for head and thoracic movements. CONCLUSION: Overall, VMC showed promising results for lower body and shoulder kinematics. However, the tracking of the wrist and pelvis still needs to be refined. The research results provide a basis for further investigations that promote the fusion of VMC and musculoskeletal models.}, language = {en} } @article{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {12}, publisher = {MDPI}, doi = {10.3390/s24124001}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} }