@misc{BroserFalterŁawrowskietal., author = {Broser, Christian and Falter, Thomas and Ławrowski, Robert Damian and Altenbuchner, Amelie and V{\"o}gele, Daniel and Koss, Claus and Schlampp, Matthias and Dunnweber, Jan and Steffens, Oliver and Heckner, Markus and Jaritz, Sabine and Schiegl, Thomas and Corsten, Sabine and Lauer, Norina and Guertler, Katherine and Koenig, Eric and Haug, Sonja and Huber, Dominik and Birkenmaier, Clemens and Krenkel, Lars and Wagner, Thomas and Justus, Xenia and Saßmannshausen, Sean Patrick and Kleine, Nadine and Weber, Karsten and Braun, Carina N. and Giacoppo, Giuliano and Heinrich, Michael and Just, Tobias and Schreck, Thomas and Schnabl, Andreas and Gilmore, Amador T{\´e}ran and Roeslin, Samuel and Schmid, Sandra and Wellnitz, Felix and Malz, Sebastian and Maurial, Andreas and Hauser, Florian and Mottok, J{\"u}rgen and Klettke, Meike and Scherzinger, Stefanie and St{\"o}rl, Uta and Heckner, Markus and Bazo, Alexander and Wolff, Christian and Kopper, Andreas and Westner, Markus and Pongratz, Christian and Ehrlich, Ingo and Briem, Ulrich and Hederer, Sebastian and Wagner, Marcus and Schillinger, Moritz and G{\"o}rlach, Julien and Hierl, Stefan and Siegl, Marco and Langer, Christoph and Hausladen, Matthias and Schreiner, Rupert and Haslbeck, Matthias and Kreuzer, Reinhard and Br{\"u}ckl, Oliver and Dawoud, Belal and Rabl, Hans-Peter and Gamisch, Bernd and Schmidt, Ottfried and Heberl, Michael and G{\"a}nsbauer, Bianca and Bick, Werner and Ellermeier, Andreas and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Tschurtschenthaler, Karl and Aurbach, Maximilian and Dendorfer, Sebastian and Betz, Michael A. and Szecsey, Tamara and Mauerer, Wolfgang and Murr, Florian}, title = {Forschung 2018}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-5-9}, doi = {10.35096/othr/pub-1382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13826}, pages = {98}, subject = {Forschung}, language = {de} } @inproceedings{MurrMauerer, author = {Murr, Florian and Mauerer, Wolfgang}, title = {McFSM: Globally Taming Complex Systems}, series = {2017 IEEE/ACM 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 21-21 May 2017, Buenos Aires, Argentina}, booktitle = {2017 IEEE/ACM 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS), 21-21 May 2017, Buenos Aires, Argentina}, publisher = {IEEE}, doi = {10.1109/SEsCPS.2017.7}, pages = {26 -- 29}, abstract = {Industrial computing devices, in particular cyber-physical, real-time and safety-critical systems, focus on reacting to external events and the need to cooperate with other devices to create a functional system. They are often implemented with languages that focus on a simple, local description of how a component reacts to external input data and stimuli. Despite the trend in modern software architectures to structure systems into largely independent components, the remaining interdependencies still create rich behavioural dynamics even for small systems. Standard and industrial programming approaches do usually not model or extensively describe the global properties of an entire system. Although a large number of approaches to solve this dilemma have been suggested, it remains a hard and error-prone task to implement systems with complex interdependencies correctly. We introduce multiple coupled finite state machines (McFSMs), a novel mechanism that allows us to model and manage such interdependencies. It is based on a consistent, well-structured and simple global description. A sound theoretical foundation is provided, and associated tools allow us to generate efficient low-level code in various programming languages using model-driven techniques. We also present a domain specific language to express McFSMs and their connections to other systems, to model their dynamic behaviour, and to investigate their efficiency and correctness at compile-time.}, language = {en} } @unpublished{MurrMauerer, author = {Murr, Florian and Mauerer, Wolfgang}, title = {McFSM: Near Turing-Complete Finite-State Based Programming}, pages = {11}, abstract = {Finite state machines (FSMs) are an appealing mechanism for simple practical computations: They lend themselves to very effcient and deterministic implementation, are easy to understand, and allow for formally proving many properties of interest. Unfortunately, their computational power is deemed insuffcient for many tasks, and their usefulness has been further hampered by the state space explosion problem and other issues when na{\"i}vely trying to scale them to sizes large enough for many real-life applications. This paper expounds on theory and implementation of multiple coupled fnite state machines (McFSMs), a novel mechanism that combines benefits of FSMs with near Turing-complete, practical computing power, and that was designed from the ground up to support static analysis and reasoning. We develop an elaborate category-theoretical foundation based on non-deterministic Mealy machines, which gives a suitable algebraic description for novel ways of blending di\#erent computing models. Our experience is based on a domain specific language and an integrated development environment that can compile McFSM models to multiple target languages, applying it to use-cases based on industrial scenarios. We discuss properties and advantages of McFSMs, explain how the mechanism can interact with real-world systems and existing code without sacrificing provability, determinism or performance. We discuss how McFSMs can be used to replace and improve on commonly employed programming patterns, and show how their effcient handling of large state spaces enables them to be used as core building blocks for distributed, safety critical, and real-time systems of industrial complexity, which contributes to the longdesired goal of providing executable specifications.}, language = {en} }