@incollection{MeisterYeapGohetal., author = {Meister, Johannes and Yeap, Kim Ho and Goh, Magdalene Wan Ching and Nisar, Humaira and Fischer, Johannes and Meier, Hans}, title = {The Design of a Pheromone-Based Robotic Varroa Trap for Beekeeping Applications}, series = {Robotics and AI for Cybersecurity and Critical Infrastructure in Smart Cities}, booktitle = {Robotics and AI for Cybersecurity and Critical Infrastructure in Smart Cities}, editor = {Nedjah, Nadia and Abd El-Latif, Ahmed A. and Gupta, Brij B. and Mourelle, Luiza M.}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-030-96736-9}, doi = {10.1007/978-3-030-96737-6_2}, pages = {21 -- 56}, language = {en} } @inproceedings{HauslerFischerWunderlichetal., author = {Hausler, Peter and Fischer, Johannes and Wunderlich, Lukas and Recum, Patrick and Peller, Sebastian and Hirsch, Thomas and Bierl, Rudolf}, title = {Miniaturisierte Sensoren basierend auf Oberfl{\"a}chenplasmonenresonanz, Chancen und Herausforderungen}, series = {DGaO-Proceedings 2021}, booktitle = {DGaO-Proceedings 2021}, publisher = {Dt. Gesellschaft f{\"u}r angewandte Optik}, address = {Erlangen-N{\"u}rnberg}, abstract = {Derzeit gibt es zahlreiche Bereiche, wie Umwelt Monitoring und zivile Infrastruktur in denen geeignete Sensoren f{\"u}r die {\"U}berwachung der Systeme fehlen. SPR-basierte Sensoren haben das Potential diese L{\"u}cke zu schließen. Um f{\"u}r den Einsatz in der Umwelt tauglich zu werden, m{\"u}ssen die Sensoren noch robuster werden. Hier wird eine m{\"o}gliche L{\"o}sung gezeigt.}, language = {de} } @misc{HauslerRothVitzthumeckeretal., author = {Hausler, Peter and Roth, Carina and Vitzthumecker, Thomas and Fischer, Johannes and Bierl, Rudolf}, title = {Motionless SPR-angle scan with a miniaturized device}, series = {Europtrode XIV, Naples, 25-28 March 2018}, journal = {Europtrode XIV, Naples, 25-28 March 2018}, language = {en} } @inproceedings{HauslerWunderlichFischeretal., author = {Hausler, Peter and Wunderlich, Lukas and Fischer, Johannes and Pfab, Christina and Heckscher, Simon and Hirsch, Thomas and Bierl, Rudolf}, title = {Surface plasmon resonance imaging for detection of drug metabolites in water}, series = {Proceedings of SPIE, Optical Sensors 2019, 1 - 4 April 2019, Prague, Czech Republic}, volume = {Vol. 11028}, booktitle = {Proceedings of SPIE, Optical Sensors 2019, 1 - 4 April 2019, Prague, Czech Republic}, issn = {0277-786X}, doi = {10.1117/12.2522324}, pages = {11}, abstract = {The analysis of surface water, groundwater, drinking water as well as sewage is important to get information about the contamination of the water cycle. Currently, these time-consuming investigations require special equipment, like for example hyphenated mass spectrometry. Surface plasmon resonance (SPR) is a faster alternative as it is highly sensitive to changes in the dielectric medium next to a thin metal layer and makes it a quasi-universal detector. Therefore, and due to the labelfree nature, SPR is a widely used sensing tool for real-time monitoring of molecular interactions of various analytes. SPR imaging (SPRi) has several advantages to standard surface plasmon resonance, as it allows to observe many analytes in parallel as well as the integration of referencing technologies. However, the homogenous illumination of a large area (several millimeters) with a small light source is challenging and demands new approaches. Allopurinol, a drug used to lower the blood concentration of urate and hence decrease the affection of gout, gets metabolized to oxipurinol in the body and dropped out almost entirely by urinary excretion. After wastewater treatment, concentrations of oxipurinol up to 21.7 μg•L-1 are detected. Further tracking of oxipurinol in the urban water cycle showed its presence in rivers and streams or even in groundwater. Therefore, the high biological stability of oxipurinol allows this molecule to be used as a marker for domestic wastewater in the environment. For the detection of oxipurinol by SPR graphene was used as receptive layer, as the analyte can bind via π-stacking to this surface. An SPRi technique was developed and compared to conventional SPR system for the detection of oxipurinol.}, language = {en} } @inproceedings{Fischer, author = {Fischer, Johannes}, title = {Miniaturisierter plasmonischer Sensor f{\"u}r das Monitoring von Weichmachern in Gew{\"a}sserproben}, series = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, booktitle = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, publisher = {VDE-Verlag}, address = {Berlin}, isbn = {978-3-8007-4491-6}, language = {de} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} } @inproceedings{HauslerJobstFischeretal., author = {Hausler, Peter and Jobst, Simon and Fischer, Johannes and Roth, Carina and Bierl, Rudolf}, title = {Homogeneous Light Source for Surface Plasmon Resonance Imaging}, series = {PHOTOPTICS 2020: proceedings of the 8th International Conference on Photonics, Optics and Laser Technology, Valletta, Malta, February 27-29, 2020}, booktitle = {PHOTOPTICS 2020: proceedings of the 8th International Conference on Photonics, Optics and Laser Technology, Valletta, Malta, February 27-29, 2020}, publisher = {SCITEPRESS - Science and Technology Publications}, doi = {10.5220/0009168701630167}, pages = {163 -- 167}, abstract = {We describe how to build a homogeneous light source for Surface Plasmon Resonance Imaging (SPRi) which mainly finds its applications in pharmaceutical screening and biotechnology so far. SPR spectroscopy is a label-free, non-destructive and highly sensitive measurement principle for detecting changes in the refractive index in close vicinity of a gold surface. A transfer of this technology to a miniaturized sensor will broaden the range of possible applications. Commercial SPR assays are mainly working with a small number of sensing spots. In contrast, the SPR imaging system shown here will allow the use of an array of many sensing spots. In combination with chemical receptors designed as an artificial nose or an electronic tongue, the simultaneous detection of many analytes is envisioned. So far, lasers or other inhomogeneous light sources were used to illuminate the sensing surface, which is decreasing the systems sensitivity. We show a compact ( 300mm2) homogeneous top hat profile. The combination of a high bit-resolution camera with our new light source enables a reflectivity based surface plasmon resonance imaging system with a high refractive index unit (RIU) resolution.}, language = {en} }