@article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {641 -- 649}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} } @misc{RoserMeinikheimMendeletal., author = {Roser, David and Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik Andreas Helmut Otto and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and R{\"u}ckert, Tobias and Matsumura, Tomoaki and Fernandez-Esparrach, G. and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Human-Computer Interaction: Impact of Artificial Intelligence on the diagnostic confidence of endoscopists assessing videos of Barrett's esophagus}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Georg Thieme Verlag}, issn = {1438-8812}, doi = {10.1055/s-0044-1782859}, pages = {79}, abstract = {Aims Human-computer interactions (HCI) may have a relevant impact on the performance of Artificial Intelligence (AI). Studies show that although endoscopists assessing Barrett's esophagus (BE) with AI improve their performance significantly, they do not achieve the level of the stand-alone performance of AI. One aspect of HCI is the impact of AI on the degree of certainty and confidence displayed by the endoscopist. Indirectly, diagnostic confidence when using AI may be linked to trust and acceptance of AI. In a BE video study, we aimed to understand the impact of AI on the diagnostic confidence of endoscopists and the possible correlation with diagnostic performance. Methods 22 endoscopists from 12 centers with varying levels of BE experience reviewed ninety-six standardized endoscopy videos. Endoscopists were categorized into experts and non-experts and randomly assigned to assess the videos with and without AI. Participants were randomized in two arms: Arm A assessed videos first without AI and then with AI, while Arm B assessed videos in the opposite order. Evaluators were tasked with identifying BE-related neoplasia and rating their confidence with and without AI on a scale from 0 to 9. Results The utilization of AI in Arm A (without AI first, with AI second) significantly elevated confidence levels for experts and non-experts (7.1 to 8.0 and 6.1 to 6.6, respectively). Only non-experts benefitted from AI with a significant increase in accuracy (68.6\% to 75.5\%). Interestingly, while the confidence levels of experts without AI were higher than those of non-experts with AI, there was no significant difference in accuracy between these two groups (71.3\% vs. 75.5\%). In Arm B (with AI first, without AI second), experts and non-experts experienced a significant reduction in confidence (7.6 to 7.1 and 6.4 to 6.2, respectively), while maintaining consistent accuracy levels (71.8\% to 71.8\% and 67.5\% to 67.1\%, respectively). Conclusions AI significantly enhanced confidence levels for both expert and non-expert endoscopists. Endoscopists felt significantly more uncertain in their assessments without AI. Furthermore, experts with or without AI consistently displayed higher confidence levels than non-experts with AI, irrespective of comparable outcomes. These findings underscore the possible role of AI in improving diagnostic confidence during endoscopic assessment.}, language = {en} } @misc{ZellmerRauberProbstetal., author = {Zellmer, Stephan and Rauber, David and Probst, Andreas and Weber, Tobias and Braun, Georg and Nagl, Sandra and R{\"o}mmele, Christoph and Schnoy, Elisabeth and Birzle, Lisa and Aehling, Niklas and Schulz, Dominik Andreas Helmut Otto and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {K{\"u}nstliche Intelligenz als Hilfsmittel zur Detektion der Papilla duodeni major und des papill{\"a}ren Ostiums w{\"a}hrend der ERCP}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {63}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {5}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0045-1806882}, pages = {e295}, abstract = {Einleitung Die Endoskopische Retrograde Cholangiopankreatikographie (ERCP) ist der Goldstandard in der endoskopischen Therapie von Erkrankungen des pankreatobili{\"a}ren Trakts. Allerdings ist sie technisch anspruchsvoll, schwer zu erlernen und mit einer relativ hohen Komplikationsrate assoziiert. Daher soll in der vorliegenden Machbarkeitsstudie gepr{\"u}ft werden, ob mithilfe eines Deeplearning- Algorithmus die Papille und das Ostium zuverl{\"a}ssig detektiert werden k{\"o}nnen und dieser f{\"u}r Endoskopiker, insbesondere in der Ausbildungssituation, ein geeignetes Hilfsmittel darstellen k{\"o}nnte. Material und Methodik Insgesamt wurden 1534 ERCP-Bilder von 134 Patienten analysiert, wobei sowohl die Papilla duodeni major als auch das Ostium segmentiert wurden. Anschließend erfolgte das Training eines neuronalen Netzes unter Verwendung eines Deep-Learning-Algorithmus. F{\"u}r den Test des Algorithmus erfolgte eine f{\"u}nffache Kreuzvalidierung. Ergebnisse Auf den 1534 gelabelten Bildern wurden f{\"u}r die Klasse Papille ein F1-Wert von 0,7996, eine Sensitivit{\"a}t von 0,8488 und eine Spezifit{\"a}t von 0,9822 erzielt. F{\"u}r die Klasse Ostium ergaben sich ein F1-Wert von 0,5198, eine Sensitivit{\"a}t von 0,5945 und eine Spezifit{\"a}t von 0,9974. Klassen{\"u}bergreifend (Klasse Papille und Klasse Ostium) betrug der F1-Wert 0,6593, die Sensitivit{\"a}t 0,7216 und f{\"u}r die Spezifit{\"a}t 0,9898. Zusammenfassung In der vorliegenden Machbarkeitsstudie zeigte das neuronale Netz eine hohe Sensitivit{\"a}t und eine sehr hohe Spezifit{\"a}t bei der Identifikation der Papilla duodeni major. Die Detektion des Ostiums erfolgte hingegen mit einer deutlich geringeren Sensitivit{\"a}t. Zuk{\"u}nftig ist eine Erweiterung des Trainingsdatensatzes um Videos und klinische Daten vorgesehen, um die Leistungsf{\"a}higkeit des Netzwerks zu verbessern. Hierdurch k{\"o}nnte langfristig ein geeignetes Assistenzsystem f{\"u}r die ERCP, insbesondere in der Ausbildungssituation etabliert werden.}, language = {de} }