@article{OttRosengarthDoenitzetal., author = {Ott, Christian and Rosengarth, Katharina and Doenitz, Christian and Hoehne, Julius and Wendl, Christina and Dodoo-Schittko, Frank and Lang, Elmar Wolfgang and Schmidt, Nils Ole and Goldhacker, Markus}, title = {Preoperative Assessment of Language Dominance through Combined Resting-State and Task-Based Functional Magnetic Resonance Imaging}, series = {Journal of personalized medicine}, volume = {11}, journal = {Journal of personalized medicine}, number = {12}, publisher = {MDPI}, doi = {10.3390/jpm11121342}, abstract = {Brain lesions in language-related cortical areas remain a challenge in the clinical routine. In recent years, the resting-state fMRI (RS-fMRI) was shown to be a feasible method for preoperative language assessment. The aim of this study was to examine whether language-related resting-state components, which have been obtained using a data-driven independent-component-based identification algorithm, can be supportive in determining language dominance in the left or right hemisphere. Twenty patients suffering from brain lesions close to supposed language-relevant cortical areas were included. RS-fMRI and task-based (TB-fMRI) were performed for the purpose of preoperative language assessment. TB-fMRI included a verb generation task with an appropriate control condition (a syllable switching task) to decompose language-critical and language-supportive processes. Subsequently, the best fitting ICA component for the resting-state language network (RSLN) referential to general linear models (GLMs) of the TB-fMRI (including models with and without linguistic control conditions) was identified using an algorithm based on the Dice index. Thereby, the RSLNs associated with GLMs using a linguistic control condition led to significantly higher laterality indices than GLM baseline contrasts. LIs derived from GLM contrasts with and without control conditions alone did not differ significantly. In general, the results suggest that determining language dominance in the human brain is feasible both with TB-fMRI and RS-fMRI, and in particular, the combination of both approaches yields a higher specificity in preoperative language assessment. Moreover, we can conclude that the choice of the language mapping paradigm is crucial for the mentioned benefits.}, language = {en} } @misc{OttRosengarthDoenitzetal., author = {Ott, C. and Rosengarth, K. and Doenitz, Christian and Hoehne, J. and Wendl, C. and Dodoo-Schittko, Frank and Lang, E. and Schmidt, Nils Ole and Goldhacker, Markus}, title = {Preoperative assessment of language dominance through combined resting-state and task-based functional magnetic resonance imaging}, series = {Brain and Spine}, volume = {1}, journal = {Brain and Spine}, number = {Suppl. 2}, publisher = {Elsevier}, doi = {10.1016/j.bas.2021.100523}, abstract = {Background: Brain lesions in language-related cortical areas remain a challenge in the clinical routine. In recent years the resting-state fMRI (rs-fMRI) was shown to be a feasible method for preoperative language assessment. The aim of this study was to examine whether language-related resting-state components, which have been obtained using a data-driven independent-component-based identification algorithm, can be supportive in determining language dominance in the left or right hemisphere. Methods: Twenty patients suffering from brain lesions close to supposed language relevant cortical areas were included. Rs-fMRI and task-based (tb-fMRI) were performed for the purpose of preoperative language assessment. Tb-fMRI included a verb generation task with an appropriate control condition (a syllable switching task) to decompose language critical and language supportive processes. Subsequently, the best fitting ICA component for the resting-state language network (RSLN) referential to general linear models (GLMs) of the tb-fMRI (including models with and without linguistic control conditions) was identified using an algorithm based on the Dice-index. Results: The RSLNs associated with GLMs using a linguistic control condition led to significantly higher laterality indices than GLM baseline contrasts. LIs derived from GLM contrasts with and without control conditions alone did not differ significantly. Conclusion: In general, the results suggest that determining language dominance in the human brain is feasible both with tb-fMRI and rs-fMRI, and in particular, the combination of both approaches yields a higher specificity in preoperative language assessment. Moreover, we can conclude that the choice of the language mapping paradigm is crucial for the mentioned benefits.}, language = {en} } @inproceedings{WeberDoenitzBrawanskietal., author = {Weber, Joachim and Doenitz, Christian and Brawanski, Alexander and Palm, Christoph}, title = {Data-Parallel MRI Brain Segmentation in Clinicial Use}, series = {Bildverarbeitung f{\"u}r die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2015 in L{\"u}beck}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2015 in L{\"u}beck}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-46224-9_67}, pages = {389 -- 394}, abstract = {Structural MRI brain analysis and segmentation is a crucial part in the daily routine in neurosurgery for intervention planning. Exemplarily, the free software FSL-FAST (FMRIB's Segmentation Library - FMRIB's Automated Segmentation Tool) in version 4 is used for segmentation of brain tissue types. To speed up the segmentation procedure by parallel execution, we transferred FSL-FAST to a General Purpose Graphics Processing Unit (GPGPU) using Open Computing Language (OpenCL) [1]. The necessary steps for parallelization resulted in substantially different and less useful results. Therefore, the underlying methods were revised and adapted yielding computational overhead. Nevertheless, we achieved a speed-up factor of 3.59 from CPU to GPGPU execution, as well providing similar useful or even better results.}, subject = {Kernspintomografie}, language = {en} }