@article{DendorferMaierTayloretal., author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Taylor, David and Hammer, Joachim}, title = {Anisotropy of the fatigue behaviour of cancellous bone}, series = {Journal of Biomechanics}, volume = {41}, journal = {Journal of Biomechanics}, number = {3}, doi = {10.1016/j.jbiomech.2007.09.037}, pages = {636 -- 641}, abstract = {The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions which are not aligned with the main physiological axis remains unclear. Furthermore site and species dependent relationships are not well described. In this study five different groups of trabecular bone, defined in terms of orientation, species and site were exposed to cyclic compression. In total, 108 fatigue tests were analysed. The lifetimes were found to decrease drastically when off-axis loads were applied. Additionally, species and site strongly affect fatigue lifetimes. Strains at failure were also found to be a function of orientation.}, subject = {Erm{\"u}dung}, language = {en} } @inproceedings{SeefriedAurbachWyssetal., author = {Seefried, C. and Aurbach, Maximilian and Wyss, C. and Dendorfer, Sebastian}, title = {Achilles tendon lengthening alters stresses in the growth plate}, series = {International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland}, booktitle = {International Conference BIOMDLORE, June 28 - 30 2018, Białystok, Poland}, language = {en} } @article{VoellnerWeberWeberetal., author = {V{\"o}llner, Florian and Weber, Tim A. and Weber, Markus and Renkawitz, Tobias and Dendorfer, Sebastian and Grifka, Joachim and Craiovan, Benjamin}, title = {A simple method for determining ligament stiffness during total knee arthroplasty in vivo}, series = {Scientific Reports}, volume = {9}, journal = {Scientific Reports}, publisher = {Nature}, doi = {10.1038/s41598-019-41732-x}, pages = {1 -- 8}, abstract = {A key requirement in both native knee joints and total knee arthroplasty is a stable capsular ligament complex. However, knee stability is highly individual and ranges from clinically loose to tight. So far, hardly any in vivo data on the intrinsic mechanical of the knee are available. This study investigated if stiffness of the native ligament complex may be determined in vivo using a standard knee balancer. Measurements were obtained with a commercially available knee balancer, which was initially calibrated in vitro. 5 patients underwent reconstruction of the force-displacement curves of the ligament complex. Stiffness of the medial and lateral compartments were calculated to measure the stability of the capsular ligament complex. All force-displacement curves consisted of a non-linear section at the beginning and of a linear section from about 80 N onwards. The medial compartment showed values of 28.4 ± 1.2 N/mm for minimum stiffness and of 39.9 ± 1.1 N/mm for maximum stiffness; the respective values for the lateral compartment were 19.9 ± 0.9 N/mm and 46.6 ± 0.8 N/mm. A commercially available knee balancer may be calibrated for measuring stiffness of knee ligament complex in vivo, which may contribute to a better understanding of the intrinsic mechanical behaviour of knee joints.}, subject = {Biomechanische Analyse}, language = {en} } @inproceedings{HornerDendorferKiisetal., author = {Horner, Marc and Dendorfer, Sebastian and Kiis, Arne and Lawrenchuk, Mike and Verma, Gunjan}, title = {A Patient based simulation workflow for orthopedic device design and analysis}, series = {SBC Ortho Workshop, June 2011}, booktitle = {SBC Ortho Workshop, June 2011}, language = {en} } @article{PutzerAuerMalpicaetal., author = {Putzer, Michael and Auer, Stefan and Malpica, William and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion}, series = {BMC Musculoskeletal Disorders}, volume = {17}, journal = {BMC Musculoskeletal Disorders}, number = {95}, doi = {10.1186/s12891-016-0942-x}, abstract = {Background There is a wide range of mechanical properties of spinal ligaments documented in literature. Due to the fact that ligaments contribute in stabilizing the spine by limiting excessive intersegmental motion, those properties are of particular interest for the implementation in musculoskeletal models. The aim of this study was to investigate the effect of varying ligament stiffness on the kinematic behaviour of the lumbar spine. Methods A musculoskeletal model with a detailed lumbar spine was modified according to fluoroscopic recordings and corresponding data files of three different subjects. For flexion, inverse dynamics analysis with a variation of the ligament stiffness matrix were conducted. The influence of several degrees of ligament stiffness on the lumbar spine model were investigated by tracking ligament forces, disc forces and resulting moments generated by the ligaments. Additionally, the kinematics of the motion segments were evaluated. Results An increase of ligament stiffness resulted in an increase of ligament and disc forces, whereas the relative change of disc force increased at a higher rate at the L4/L5 level (19 \%) than at the L3/L4 (10 \%) level in a fully flexed posture. The same behaviour applied to measured moments with 67 \% and 45 \%. As a consequence, the motion deflected to the lower levels of the lumbar spine and the lower discs had to resist an increase in loading. Conclusions Higher values of ligament stiffness over all lumbar levels could lead to a shift of the loading and the motion between segments to the lower lumbar levels. This could lead to an increased risk for the lower lumbar parts.}, language = {en} } @article{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBodyTM detailed hand model}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {24}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {7}, publisher = {Taylor \& Francis}, doi = {10.1080/10255842.2020.1851367}, pages = {777 -- 787}, abstract = {Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.}, language = {en} } @inproceedings{MelznerEngelhardtHavelkovaetal., author = {Melzner, Maximilian and Engelhardt, Lucas and Havelkova, Leonard and Simon, Ulrich and Dendorfer, Sebastian}, title = {A new musculoskeletal AnyBody detailed hand model validated by electromyography}, series = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, booktitle = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, abstract = {The AnyBody™ Modeling System (AMS) [1], is an universally used musculoskeletal simulation software using inverse dynamics. Until now, no complete human hand model is known in the AMS. Also considering other musculoskeletal software platforms, just one detailed entire hand model is recently published [2] but is only based on one subject. The aim of this work is to implement a full detailed hand model for the AMS including all extrinsic and intrinsic muscles using data by the UWB gained through an anatomical study of ten cadaver hands.}, language = {en} } @misc{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Rybarova, Martina and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBody detailed hand model}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, abstract = {The AnyBody™ Modeling System (AMS) [1], is an universally used musculoskeletal simulation software using inverse dynamics. Until now, no complete human hand model is known in the AMS. Also considering other musculoskeletal software platforms, just one detailed entire hand model is recently published [2] but is only based on one subject. The aim of this work is to implement a full detailed hand model for the AMS including all extrinsic and intrinsic muscles using data by the UWB gained through an anatomical study of ten cadaver hands.}, language = {en} }