@inproceedings{WeberRenkawitzBulstraetal., author = {Weber, Tim and Renkawitz, Tobias and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Biomechanics of computer-assisted vs. conventional THR after one year follow up}, series = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, booktitle = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, language = {en} } @inproceedings{WeberDullienPutzeretal., author = {Weber, Tim and Dullien, Silvia and Putzer, Michael and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Biomechanical outcome after computer-assisted vs. conventional THR - study concept and preliminary gait analysis results}, series = {GAMMA Workshop, Hannover, 2012}, booktitle = {GAMMA Workshop, Hannover, 2012}, language = {en} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Biomechanical Outcome after computer-assisted vs. Conventional THR}, series = {ANSYS Conference \& 32th CADFEM Users' Meeting 2014, 04.-06. Juni, N{\"u}rnberg}, booktitle = {ANSYS Conference \& 32th CADFEM Users' Meeting 2014, 04.-06. Juni, N{\"u}rnberg}, language = {en} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {Biomechanical evaluation and optimisation of countermeasure exercises}, series = {ESA/ESTEC Bedrest Strategy Workshop, Noordwijk, NL, 2009}, booktitle = {ESA/ESTEC Bedrest Strategy Workshop, Noordwijk, NL, 2009}, language = {en} } @inproceedings{PenzkoferGrechenigKujatetal., author = {Penzkofer, Rainer and Grechenig, S. and Kujat, Richard and Angele, Peter and Dendorfer, Sebastian}, title = {Biomechanical comparison of the dorsal femur condyles and the iliac crest in terms of failure behavior}, series = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, booktitle = {XXV Congress of the International Society of Biomechanics, Glasgow, UK, 12th-16th July 2015}, language = {en} } @article{AuerSchieblIversenetal., author = {Auer, Simon and Schiebl, Jonas and Iversen, Kristoffer and Subhash Chander, Divyaksh and Damsgaard, Michael and Dendorfer, Sebastian}, title = {Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System}, series = {Zeitschrift f{\"u}r Arbeitswissenschaften}, volume = {76}, journal = {Zeitschrift f{\"u}r Arbeitswissenschaften}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s41449-022-00336-4}, pages = {440 -- 449}, abstract = {Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling.}, language = {en} } @misc{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophia and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical Analysis of the Right Elevated Glenohumeral Joint in Violinists during Legato-Playing}, series = {Biomdlore 2021: 21-23 October 2021 Vilnius/Trakai, Lithuania}, journal = {Biomdlore 2021: 21-23 October 2021 Vilnius/Trakai, Lithuania}, doi = {10.3233/THC-219001}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, language = {en} } @article{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophie and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing}, series = {Technology and Health Care}, volume = {30}, journal = {Technology and Health Care}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219001}, pages = {177 -- 186}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, subject = {Biomechanische Analyse}, language = {en} } @article{SchmitzNeumannNeumannetal., author = {Schmitz, Paul and Neumann, Christoph Cornelius and Neumann, Carsten and Nerlich, Michael and Dendorfer, Sebastian}, title = {Biomechanical analysis of iliac crest loading following cortico-cancellous bone harvesting}, series = {Journal of Orthopaedic Surgery and Research}, volume = {13}, journal = {Journal of Orthopaedic Surgery and Research}, number = {108}, publisher = {Springer Nature}, doi = {10.1186/s13018-018-0822-1}, pages = {1 -- 8}, abstract = {Background Iliac crest bone harvesting is a frequently performed surgical procedure widely used to treat bone defects. The objective of this study is to assess the biomechanical quantities related to risk for pelvic fracture after harvesting an autologous bone graft at the anterior iliac crest. Methods Finite element models with a simulated harvest site (sized 15 × 20 mm, 15 × 35 mm, 30 × 20 mm and 30 × 35 mm) in the iliac wing are created. The relevant loading case is when the ipsilateral leg is lifted off the ground. Musculoskeletal analysis is utilized to compute the muscle and joint forces involved in this motion. These forces are used as boundary conditions for the finite element analyses. Bone tissue stress is analyzed. Results Critical stress peaks are located between the anterior superior iliac spine (ASIS) and the anterior edge of the harvest site. Irrespective of the graft size, the iliac wing does not show any significant stress peaks with the harvest site being 20 to 25 mm posterior to the ASIS. The harvest area itself inhibits the distribution of the forces applied on the ASIS to extend to the posterior iliac wing. This leads to a lack of stress posterior to the harvest site. A balanced stress distribution with no stress peaks appears when the bone graft is taken below the iliac crest. Conclusion A harvest site located at least 20 to 25 mm posterior to the ASIS should be preferred to minimize the risk of iliac fatigue fracture.}, subject = {Beckenkammknochen}, language = {en} } @inproceedings{RobieDendorferRasmussenetal., author = {Robie, Bruce and Dendorfer, Sebastian and Rasmussen, John and Christensen, Soeren Toerholm}, title = {Axial Rotation Requires Greatest Load in Multifidus Muscle - Potential Association with Low Back Pain?}, series = {Annual Meeting of the AANS/CNS Section on Disorders of the Spine and Peripheral Nerves, 2011, Phoenix, Arizona}, booktitle = {Annual Meeting of the AANS/CNS Section on Disorders of the Spine and Peripheral Nerves, 2011, Phoenix, Arizona}, language = {en} }