@misc{AuerKrutschRenkawitzetal., author = {Auer, Simon and Krutsch, Werner and Renkawitz, Tobias and Kubowitsch, Simone and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Effect of mental demand on leg loading in highly dynamic motion}, series = {AnyBody online Webinar, Oct 2020}, journal = {AnyBody online Webinar, Oct 2020}, abstract = {Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury.}, language = {en} } @article{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBodyTM detailed hand model}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {24}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {7}, publisher = {Taylor \& Francis}, doi = {10.1080/10255842.2020.1851367}, pages = {777 -- 787}, abstract = {Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.}, language = {en} }