@misc{MelznerPfeiferAltetal., author = {Melzner, Maximilian and Pfeifer, Christian and Alt, V. and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {{\"A}nderung der Gelenkreaktionskraft bei Sch{\"a}digung des medialen Bandapparates im Ellenbogen}, series = {Zeitschrift fur Orthopadie und Unfallchirurgie}, volume = {158}, journal = {Zeitschrift fur Orthopadie und Unfallchirurgie}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0040-1717270}, language = {de} } @article{Dendorfer, author = {Dendorfer, Sebastian}, title = {{\"A}lterwerden muss auch mal wehtun!}, series = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, journal = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, language = {de} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Kubowitsch, Simone and Krutsch, Werner and Weber, Markus and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Webcast: Effect of mental demand on leg loading in highly dynamic motion}, abstract = {Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury.}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Virtuelle Modelle der oberen Extremit{\"a}t}, series = {22. Interdisziplin{\"a}res Symposium Medizin-Physiotherapie-Sportwissenschaften, 22.-23.11.2019, Regensburg, Germany}, journal = {22. Interdisziplin{\"a}res Symposium Medizin-Physiotherapie-Sportwissenschaften, 22.-23.11.2019, Regensburg, Germany}, language = {de} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {Virtuelle Menschmodelle - von der Bewegung zur Belastung}, series = {Medbo Bezirksklinikum Regensburg, April 2016}, booktitle = {Medbo Bezirksklinikum Regensburg, April 2016}, language = {de} } @inproceedings{WeberDendorferGrifkaetal., author = {Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Weber, Markus and W{\"o}rner, Michael and Dullien, Silvia and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Verbessert die computerassistierte Femur First Operationstechnik f{\"u}r die H{\"u}ftendoprothetik den muskuloskelettalen Lastfall auf das H{\"u}ftgelenk?}, series = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, booktitle = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, language = {de} } @article{WeberDullienGrifkaetal., author = {Weber, Tim and Dullien, Silvia and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Validation of a Motion Capture Laboratory and a new marker-placement protcol for clinical applications}, series = {Gait \& Posture}, volume = {38}, journal = {Gait \& Posture}, number = {Suppl. 1}, doi = {10.1016/j.gaitpost.2013.07.229}, pages = {113 -- 114}, language = {en} } @inproceedings{AndersendeZeeDendorferetal., author = {Andersen, Michael Skipper and de Zee, Mark and Dendorfer, Sebastian and MacWilliams, Bruce and Rasmussen, John}, title = {Validation of a detailed lower extremity model based on the Klein Horsman data set}, series = {Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics (ISB 2009), July 2nd - 4th 2009, Cape Town, South Africa}, booktitle = {Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics (ISB 2009), July 2nd - 4th 2009, Cape Town, South Africa}, pages = {27 -- 28}, language = {en} } @inproceedings{GalibarovDendorferRasmussen, author = {Galibarov, Pavel E. and Dendorfer, Sebastian and Rasmussen, John}, title = {Two Computational Models of the Lumbar Spine:}, series = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, booktitle = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, language = {en} } @inproceedings{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards ergonomics working - machine learning algorithms and musculoskeletal modeling}, series = {IOP Conference Series: Materials Science and Engineering}, volume = {1208}, booktitle = {IOP Conference Series: Materials Science and Engineering}, publisher = {IOP Publishing}, issn = {1757-899X}, doi = {10.1088/1757-899X/1208/1/012001}, abstract = {Ergonomic workplaces lead to fewer work-related musculoskeletal disorders and thus fewer sick days. There are various guidelines to help avoid harmful situations. However, these recommendations are often rather crude and often neglect the complex interaction of biomechanical loading and psychological stress. This study investigates whether machine learning algorithms can be used to predict mechanical and stress-related muscle activity for a standardized motion. For this purpose, experimental data were collected for trunk movement with and without additional psychological stress. Two different algorithms (XGBoost and TensorFlow) were used to model the experimental data. XGBoost in particular predicted the results very well. By combining it with musculoskeletal models, the method shown here can be used for workplace analysis but also for the development of real-time feedback systems in real workplace environments.}, language = {en} } @misc{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards Ergonomic working - machine learning algorithms and musculoskeletal modeling}, series = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, journal = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, language = {en} } @article{AurbachŠpičkaSuessetal., author = {Aurbach, Maximilian and Špička, Jan and S{\"u}ß, Franz and Vychytil, J. and Havelkov{\´a}, Leonard and Ryba, T. and Dendorfer, Sebastian}, title = {Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation}, series = {Journal of Biomechanics}, volume = {109}, journal = {Journal of Biomechanics}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.jbiomech.2020.109864}, abstract = {Musculoskeletal models of the shoulder complex are valuable research aids to investigate tears of the supraspinatus and the resulting mechanical impact during abduction of the humerus. One of the major contributors to this motion is the deltoid muscle group and for this, an accurate modeling of the lines of action is indispensable. The aim of this work was to utilize a torus obstacle wrapping approach for the deltoids of an existing shoulder model and assess the feasibility of the approach during humeral abduction. The shoulder model from the AnyBody™ modeling system was used as a platform. The size of the tori is based on a magnetic resonance imaging (MRI) approach and several kinematic couplings are implemented to determine the trajectories of the tori during abduction. To assess the model behavior, the moment arms of the virtual muscle elements and the resultant glenohumeral joint reaction force (GHJF) were compared with reference data from the literature during abduction of the humerus in the range 20°-120°. The root mean square error for the anterior, lateral and posterior part between the simulated muscle elements and reference data from the literature was 3.9, 1.7 and 5.8 mm, respectively. The largest deviation occurred on the outer elements of the muscle groups, with 12.6, 10.4 and 20.5 mm, respectively. During abduction, there is no overlapping of the muscle elements and these are in continuous contact with the torus obstacles, thus enabling a continuous force transmission. This results in a rising trend of the resultant GHJF. The torus obstacle approach as a wrapping method for the deltoid muscles provides a guided muscle pathing by simultaneously approximating the curvature of the deltoid muscle. The results from the comparison of the simulated moment arms and the resultant GHJF are in accordance with those in the literature in the range 20°-120° of abduction. Although this study shows the strength of the torus obstacle as a wrapping approach, the method of fitting the tori according to MRI data was not suitable. A cadaver study is recommended to better validate and mathematically describe the torus approach.}, language = {en} } @inproceedings{IgnasiakDendorferFerguson, author = {Ignasiak, Dominika and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Thoracolumbar spine model with articulated rigcage for the prediction of dynamic spinal loading}, series = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, booktitle = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, language = {en} } @article{IgnasiakDendorferFerguson, author = {Ignasiak, Dominika and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading}, series = {Journal of Biomechanics}, volume = {vol. 49}, journal = {Journal of Biomechanics}, number = {6}, publisher = {Elsevier Science}, doi = {10.1016/j.jbiomech.2015.10.010}, pages = {959 -- 966}, abstract = {Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32\%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary.}, subject = {Brustwirbels{\"a}ule}, language = {en} } @inproceedings{WeberRenkawitzGrifkaetal., author = {Weber, Tim and Renkawitz, Tobias and Grifka, Joachim and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The musculoskeletal load scenario of computer-assisted Femur-First THR up to one year after surgery}, series = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, booktitle = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, language = {en} } @inproceedings{DendorferKubowitsch, author = {Dendorfer, Sebastian and Kubowitsch, Simone}, title = {The interaction of mental stress and biomechanics}, series = {Health Technology Triangle, Weiden, 2016}, booktitle = {Health Technology Triangle, Weiden, 2016}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of stress on spinal loading}, series = {ESEM webconference, Dez. 2017}, booktitle = {ESEM webconference, Dez. 2017}, language = {en} } @article{HoelscherWeberLazarevetal., author = {H{\"o}lscher, Thomas and Weber, Tim A. and Lazarev, Igor and Englert, Carsten and Dendorfer, Sebastian}, title = {The influence of rotator cuff tears on glenohumeral stability during abduction tasks}, series = {Journal of Orthopaedic Research}, volume = {34}, journal = {Journal of Orthopaedic Research}, number = {9}, doi = {10.1002/jor.23161}, pages = {1628 -- 1635}, abstract = {One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making.}, subject = {Rotatorenmanschettenriss}, language = {en} } @article{WongRasmussenSimonsenetal., author = {Wong, Christian and Rasmussen, John and Simonsen, Erik B. and Hansen, Lone and de Zee, Mark and Dendorfer, Sebastian}, title = {The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine}, series = {The Open Spine Journal}, volume = {3}, journal = {The Open Spine Journal}, number = {1}, doi = {10.2174/1876532701103010021}, pages = {21 -- 26}, abstract = {Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and finite element analysis study was conducted in the lumbar spine to investigate the effects of muscle forces on a detailed musculoskeletal finite element model of the 4th lumbar vertebral body. Materials and Methodology: The muscle forces were computed with a detailed and validated inverse dynamics musculoskeletal spine model in a lifting situation, and were then applied to an orthotropic finite element model of the 4th lumbar vertebra. The results were compared with those from a simplified load case without muscles. Results: In general the von Mises stress was larger by 30\%, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.}, subject = {Lendenwirbels{\"a}ule}, language = {en} } @inproceedings{DendorferCarbesRasmussen, author = {Dendorfer, Sebastian and Carbes, S. and Rasmussen, John}, title = {The influence of muscle forces on biomechanical fracture fixation simulations - from in-vivo forces to tissue strains}, series = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, booktitle = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, language = {en} }