@misc{MelznerPfeiferAltetal., author = {Melzner, Maximilian and Pfeifer, Christian and Alt, V. and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {{\"A}nderung der Gelenkreaktionskraft bei Sch{\"a}digung des medialen Bandapparates im Ellenbogen}, series = {Zeitschrift fur Orthopadie und Unfallchirurgie}, volume = {158}, journal = {Zeitschrift fur Orthopadie und Unfallchirurgie}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0040-1717270}, language = {de} } @article{Dendorfer, author = {Dendorfer, Sebastian}, title = {{\"A}lterwerden muss auch mal wehtun!}, series = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, journal = {Gesunde Hochschule, OTH Regensburg, 4.7.2016}, language = {de} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Kubowitsch, Simone and Krutsch, Werner and Weber, Markus and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Webcast: Effect of mental demand on leg loading in highly dynamic motion}, abstract = {Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Injuries to muscles of the thigh are common in amateur and professional football, representing almost a third of all injuries. These injuries occur primarily in non-contact situations and from overuse. They can lead to a range of costs, including financial costs associated with treatment as well as those associated with long-term recovery, and absence from training and/or competition. Further, there is a high risk of injury recurrence and subsequent injury.}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Virtuelle Modelle der oberen Extremit{\"a}t}, series = {22. Interdisziplin{\"a}res Symposium Medizin-Physiotherapie-Sportwissenschaften, 22.-23.11.2019, Regensburg, Germany}, journal = {22. Interdisziplin{\"a}res Symposium Medizin-Physiotherapie-Sportwissenschaften, 22.-23.11.2019, Regensburg, Germany}, language = {de} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {Virtuelle Menschmodelle - von der Bewegung zur Belastung}, series = {Medbo Bezirksklinikum Regensburg, April 2016}, booktitle = {Medbo Bezirksklinikum Regensburg, April 2016}, language = {de} } @inproceedings{WeberDendorferGrifkaetal., author = {Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Weber, Markus and W{\"o}rner, Michael and Dullien, Silvia and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Verbessert die computerassistierte Femur First Operationstechnik f{\"u}r die H{\"u}ftendoprothetik den muskuloskelettalen Lastfall auf das H{\"u}ftgelenk?}, series = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, booktitle = {DKOU 2015, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie 2015}, language = {de} } @article{WeberDullienGrifkaetal., author = {Weber, Tim and Dullien, Silvia and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Validation of a Motion Capture Laboratory and a new marker-placement protcol for clinical applications}, series = {Gait \& Posture}, volume = {38}, journal = {Gait \& Posture}, number = {Suppl. 1}, doi = {10.1016/j.gaitpost.2013.07.229}, pages = {113 -- 114}, language = {en} } @inproceedings{AndersendeZeeDendorferetal., author = {Andersen, Michael Skipper and de Zee, Mark and Dendorfer, Sebastian and MacWilliams, Bruce and Rasmussen, John}, title = {Validation of a detailed lower extremity model based on the Klein Horsman data set}, series = {Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics (ISB 2009), July 2nd - 4th 2009, Cape Town, South Africa}, booktitle = {Proceedings of the 12th International Symposium on Computer Simulation in Biomechanics (ISB 2009), July 2nd - 4th 2009, Cape Town, South Africa}, pages = {27 -- 28}, language = {en} } @inproceedings{GalibarovDendorferRasmussen, author = {Galibarov, Pavel E. and Dendorfer, Sebastian and Rasmussen, John}, title = {Two Computational Models of the Lumbar Spine:}, series = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, booktitle = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA, vol. Marie Curie Initial Training Network "SpineFX"}, language = {en} } @inproceedings{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards ergonomics working - machine learning algorithms and musculoskeletal modeling}, series = {IOP Conference Series: Materials Science and Engineering}, volume = {1208}, booktitle = {IOP Conference Series: Materials Science and Engineering}, publisher = {IOP Publishing}, issn = {1757-899X}, doi = {10.1088/1757-899X/1208/1/012001}, abstract = {Ergonomic workplaces lead to fewer work-related musculoskeletal disorders and thus fewer sick days. There are various guidelines to help avoid harmful situations. However, these recommendations are often rather crude and often neglect the complex interaction of biomechanical loading and psychological stress. This study investigates whether machine learning algorithms can be used to predict mechanical and stress-related muscle activity for a standardized motion. For this purpose, experimental data were collected for trunk movement with and without additional psychological stress. Two different algorithms (XGBoost and TensorFlow) were used to model the experimental data. XGBoost in particular predicted the results very well. By combining it with musculoskeletal models, the method shown here can be used for workplace analysis but also for the development of real-time feedback systems in real workplace environments.}, language = {en} } @misc{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards Ergonomic working - machine learning algorithms and musculoskeletal modeling}, series = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, journal = {RIM 2021, 13th International Scientific Conference on Manufacturing Engineering, 29 Sept. - 1 Oct 2021, Sarajevo, Bosnia and Herzegovina}, language = {en} } @article{AurbachŠpičkaSuessetal., author = {Aurbach, Maximilian and Špička, Jan and S{\"u}ß, Franz and Vychytil, J. and Havelkov{\´a}, Leonard and Ryba, T. and Dendorfer, Sebastian}, title = {Torus obstacle method as a wrapping approach of the deltoid muscle group for humeral abduction in musculoskeletal simulation}, series = {Journal of Biomechanics}, volume = {109}, journal = {Journal of Biomechanics}, number = {August}, publisher = {Elsevier}, doi = {10.1016/j.jbiomech.2020.109864}, abstract = {Musculoskeletal models of the shoulder complex are valuable research aids to investigate tears of the supraspinatus and the resulting mechanical impact during abduction of the humerus. One of the major contributors to this motion is the deltoid muscle group and for this, an accurate modeling of the lines of action is indispensable. The aim of this work was to utilize a torus obstacle wrapping approach for the deltoids of an existing shoulder model and assess the feasibility of the approach during humeral abduction. The shoulder model from the AnyBody™ modeling system was used as a platform. The size of the tori is based on a magnetic resonance imaging (MRI) approach and several kinematic couplings are implemented to determine the trajectories of the tori during abduction. To assess the model behavior, the moment arms of the virtual muscle elements and the resultant glenohumeral joint reaction force (GHJF) were compared with reference data from the literature during abduction of the humerus in the range 20°-120°. The root mean square error for the anterior, lateral and posterior part between the simulated muscle elements and reference data from the literature was 3.9, 1.7 and 5.8 mm, respectively. The largest deviation occurred on the outer elements of the muscle groups, with 12.6, 10.4 and 20.5 mm, respectively. During abduction, there is no overlapping of the muscle elements and these are in continuous contact with the torus obstacles, thus enabling a continuous force transmission. This results in a rising trend of the resultant GHJF. The torus obstacle approach as a wrapping method for the deltoid muscles provides a guided muscle pathing by simultaneously approximating the curvature of the deltoid muscle. The results from the comparison of the simulated moment arms and the resultant GHJF are in accordance with those in the literature in the range 20°-120° of abduction. Although this study shows the strength of the torus obstacle as a wrapping approach, the method of fitting the tori according to MRI data was not suitable. A cadaver study is recommended to better validate and mathematically describe the torus approach.}, language = {en} } @inproceedings{IgnasiakDendorferFerguson, author = {Ignasiak, Dominika and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Thoracolumbar spine model with articulated rigcage for the prediction of dynamic spinal loading}, series = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, booktitle = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, language = {en} } @article{IgnasiakDendorferFerguson, author = {Ignasiak, Dominika and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading}, series = {Journal of Biomechanics}, volume = {vol. 49}, journal = {Journal of Biomechanics}, number = {6}, publisher = {Elsevier Science}, doi = {10.1016/j.jbiomech.2015.10.010}, pages = {959 -- 966}, abstract = {Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32\%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary.}, subject = {Brustwirbels{\"a}ule}, language = {en} } @inproceedings{WeberRenkawitzGrifkaetal., author = {Weber, Tim and Renkawitz, Tobias and Grifka, Joachim and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The musculoskeletal load scenario of computer-assisted Femur-First THR up to one year after surgery}, series = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, booktitle = {VI International Conference on Computational Bioengineering, Barcelona, Sept. 2015}, language = {en} } @inproceedings{DendorferKubowitsch, author = {Dendorfer, Sebastian and Kubowitsch, Simone}, title = {The interaction of mental stress and biomechanics}, series = {Health Technology Triangle, Weiden, 2016}, booktitle = {Health Technology Triangle, Weiden, 2016}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of stress on spinal loading}, series = {ESEM webconference, Dez. 2017}, booktitle = {ESEM webconference, Dez. 2017}, language = {en} } @article{HoelscherWeberLazarevetal., author = {H{\"o}lscher, Thomas and Weber, Tim A. and Lazarev, Igor and Englert, Carsten and Dendorfer, Sebastian}, title = {The influence of rotator cuff tears on glenohumeral stability during abduction tasks}, series = {Journal of Orthopaedic Research}, volume = {34}, journal = {Journal of Orthopaedic Research}, number = {9}, doi = {10.1002/jor.23161}, pages = {1628 -- 1635}, abstract = {One of the main goals in reconstructing rotator cuff tears is the restoration of glenohumeral joint stability, which is subsequently of utmost importance in order to prevent degenerative damage such as superior labral anterior posterior (SLAP) lesion, arthrosis, and malfunction. The goal of the current study was to facilitate musculoskeletal models in order to estimate glenohumeral instability introduced by muscle weakness due to cuff lesions. Inverse dynamics simulations were used to compute joint reaction forces for several static abduction tasks with different muscle weakness. Results were compared with the existing literature in order to ensure the model validity. Further arm positions taken from activities of daily living, requiring the rotator cuff muscles were modeled and their contribution to joint kinetics computed. Weakness of the superior rotator cuff muscles (supraspinatus; infraspinatus) leads to a deviation of the joint reaction force to the cranial dorsal rim of the glenoid. Massive rotator cuff defects showed higher potential for glenohumeral instability in contrast to single muscle ruptures. The teres minor muscle seems to substitute lost joint torque during several simulated muscle tears to maintain joint stability. Joint instability increases with cuff tear size. Weakness of the upper part of the rotator cuff leads to a joint reaction force closer to the upper glenoid rim. This indicates the comorbidity of cuff tears with SLAP lesions. The teres minor is crucial for maintaining joint stability in case of massive cuff defects and should be uprated in clinical decision-making.}, subject = {Rotatorenmanschettenriss}, language = {en} } @article{WongRasmussenSimonsenetal., author = {Wong, Christian and Rasmussen, John and Simonsen, Erik B. and Hansen, Lone and de Zee, Mark and Dendorfer, Sebastian}, title = {The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine}, series = {The Open Spine Journal}, volume = {3}, journal = {The Open Spine Journal}, number = {1}, doi = {10.2174/1876532701103010021}, pages = {21 -- 26}, abstract = {Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and finite element analysis study was conducted in the lumbar spine to investigate the effects of muscle forces on a detailed musculoskeletal finite element model of the 4th lumbar vertebral body. Materials and Methodology: The muscle forces were computed with a detailed and validated inverse dynamics musculoskeletal spine model in a lifting situation, and were then applied to an orthotropic finite element model of the 4th lumbar vertebra. The results were compared with those from a simplified load case without muscles. Results: In general the von Mises stress was larger by 30\%, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.}, subject = {Lendenwirbels{\"a}ule}, language = {en} } @inproceedings{DendorferCarbesRasmussen, author = {Dendorfer, Sebastian and Carbes, S. and Rasmussen, John}, title = {The influence of muscle forces on biomechanical fracture fixation simulations - from in-vivo forces to tissue strains}, series = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, booktitle = {World Congress on Medical Physics and Biomedical Engineering, 7 - 12, 2009, Munich}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {The influence of modeling parameters in the AnyBody Modeling System on muscle and joint loading in the shoulder}, series = {International Shoulder Group Meeting}, volume = {05}, journal = {International Shoulder Group Meeting}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {The influence of mental stress on the musculoskeletal system}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of mental stress on spinal disc loading and muscle activity}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{DendorferRasmussen, author = {Dendorfer, Sebastian and Rasmussen, John}, title = {The influence of in-vivo muscle forces on the stress distribution in a vertebral body during activities of daily living}, series = {Eurospine Warsaw, Poland 2009}, booktitle = {Eurospine Warsaw, Poland 2009}, language = {en} } @inproceedings{SuessKubowitschRasmussenetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Rasmussen, John and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {The influence of cognitive stress on muscle activation and spinal disc load}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, booktitle = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @article{PenzkoferBarnsteinerDendorfer, author = {Penzkofer, Rainer and Barnsteiner, K. and Dendorfer, Sebastian}, title = {The influence of age, shoe type and kicking direction on the severity of head trauma}, series = {Journal of Forensic Biomechanics}, volume = {5}, journal = {Journal of Forensic Biomechanics}, number = {1}, doi = {10.4172/2090-2697.1000116}, abstract = {In the last few years, increasingly kicks to the head were observed as a criminal offense. This study examined the influence of age, shoe type and kicking direction on the severity of head trauma. Male test persons were divided into two groups "Old" and "Young". Both groups were equipped with light sneakers and combat boots. A standard laboratory crash dummy was used to simulate the victim's body. First, the dummy's head, free floating above the ground, was kicked vertically. Second, the dummy's head was kicked horizontally. Established injury criteria were used to quantify the injury risk. No influence concerning the type of foot wear and no difference between the groups "Old" and "Young" could be found. For all analyses, kicking vertically generally lead to a higher risk for the subject compared to kicking horizontally. In this study, only the integral effect of the kicks could be analyzed. A detailed injury pattern cannot directly be derived from the data. Nevertheless, the presented data show the massive potential of injuries associated with head kicks.}, subject = {Kopfverletzung}, language = {en} } @misc{AurbachSuessDendorfer, author = {Aurbach, Maximilian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {The impact of the hill type muscle model on the glenohumeral joint reaction force}, series = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, journal = {16th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) 2019, New York City, USA}, language = {en} } @article{MelznerSuessDendorfer, author = {Melzner, Maximilian and Suess, Franz and Dendorfer, Sebastian}, title = {The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model - a sensitivity study}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {25}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {2}, publisher = {Taylor \& Francis}, issn = {1476-8259}, doi = {10.1080/10255842.2021.1940974}, pages = {156 -- 164}, abstract = {Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60\% of simulations are located within a ± 30\% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action.}, subject = {Biomechanik}, language = {en} } @inproceedings{GalibarovAlMunajjedDendorferetal., author = {Galibarov, Pavel E. and Al-Munajjed, Amir Andreas and Dendorfer, Sebastian and Christensen, Soeren Toerholm and Rasmussen, John}, title = {The effect of varying the stiffness of spinal fusion devices on the adjacent levels using multibody dynamics simulation}, series = {Orthopaedic Proceedings}, volume = {94-B}, booktitle = {Orthopaedic Proceedings}, number = {SUPP_XL01 Sep 2012}, pages = {2}, abstract = {INTRODUCTION Several clinical studies demonstrated long-term adjacent-level effects after implantation of spinal fusion devices[1]. These effects have been reported as adjacent joint degeneration and the development of new symptoms correlating with adjacent segment degeneration[2] and the trend has therefore gone to motion preservation devices; however, these effects have not been understood very well and have not been investigated thoroughly[3]. The aim of this study is to investigate the effect of varying the stiffness of spinal fusion devices on the adjacent vertebral levels. Disc forces, moments and facet joint forces were analyzed. METHODS The AnyBody Modeling System was used to compute the in-vivo muscle and joint reaction forces of a musculoskeletal model. The full body model used in this study consists of 188 muscle fascicles in the lumbar spine and more than 1000 individual muscle branches in total. The model has been proposed by de Zee et al.[3], validated by Rasmussen et al.[4] and by Galibarov et al.[5]. The new model[5] determines the individual motions between vertebrae based on the equilibrium between forces acting on the vertebrae from muscles and joints and the passive stiffness in disks and ligaments, figure 1a. An adult of 1.75 m and 75 kg with a spinal implant in L4L5 was modeled. This model was subjected to a flexion-extension motion using different elastic moduli to analyze and compare to a non-implanted scenario. The analyzed variables were vertebral motion, the disc reaction forces and moments, as well as facet joint forces in the treated and the adjacent levels: L2L3, L3L4, L4L5 and L5-Sacrum. RESULTS When introducing a spinal fusion device in the L4L5 joint the reaction forces and moments decreased in this joint with stiffer devices leading to lower joint loads. However, in the adjacent joints, L3L4 and L5Sacrum, an increase was observed when implanting stiffer devices. Similar trends could be found for the L2L3 joint. The loads in the facet joints showed the same trends. While introducing a spinal fusion device reduced the facet joint forces in the treated joint, the loads in the adjacent facet joints were increased according to the stiffness of the implanted device, figure 1b. DISCUSSION While the treated disc joint showed reduced motion and loads, the adjacent levels demonstrated a significant increase. In particular, the increased facet joint forces in the adjacent levels can lead to adjacent level facet pain or accelerated facet joint degeneration. Introducing a device resulted in preventing facet contact and therefore facet joint loads, even using the device with the lowest stiffness. CONCLUSION The presented model shows that clinical complications such as facet joint degeneration in adjacent levels after implantation of spinal fusion device are consistent with the change in the mechanical-stimulus distribution in the system.}, language = {en} } @inproceedings{DendorferRasmussenChristensenetal., author = {Dendorfer, Sebastian and Rasmussen, John and Christensen, Soeren Toerholm and Robie, Bruce}, title = {The Effect of Spinal Disc Herniation on Multifidus Muscles}, series = {56th Orthopaedic Research Society Meeting, New Orleans, USA, 2010}, booktitle = {56th Orthopaedic Research Society Meeting, New Orleans, USA, 2010}, language = {en} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {The effect of multifidus muscles atrophy following disc herniation on disc loading}, series = {Deutsche Gesellschaft f{\"u}r Biomechanik, Murnau, 2011}, booktitle = {Deutsche Gesellschaft f{\"u}r Biomechanik, Murnau, 2011}, language = {en} } @unpublished{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, publisher = {Center for Open Science}, doi = {10.31219/osf.io/dcqyg}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact ontheir quality of life. The aim of this review was to provide a general overview of the current state oftechnology used to assess pelvic floor functionality. It also provides literature research of the phys-iological and anatomical factors that correlate with pelvic floor health. The systematic review wasconducted according to the PRISMA guidelines. PubMed, ScienceDirect, Cochrane Library andIEEE databases were searched for publications on sensor technology for the assessment of pelvicfloor functionality. Anatomical and physiological parameters were identified through a manualsearch. In the systematic review 115 publications were included. 12 different sensor technologieswere identified. Information on the obtained parameters, sensor position, test activities and subjectcharacteristics were prepared in tabular form from each publication. 16 anatomical and physiologi- cal parameters influencing pelvic floor health were identified in 17 published studies and rankedfor their statistical significance. Taken together, this review could serve as a basis for the develop-ment of novel sensors which could allow for quantifiable prevention and diagnosis, as well as par-ticularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @article{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {12}, publisher = {MDPI}, doi = {10.3390/s24124001}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @inproceedings{RasmussenBichlerChristensenetal., author = {Rasmussen, John and Bichler, R. and Christensen, Soeren Toerholm and Wirix-Speetjens, Roel and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Subject-specific Musculoskeletal Simulation of Hip Dislocation Risk in Activities of Daily Living}, series = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA.}, booktitle = {Proceedings of the 2011 ORS Annual Meeting, Long Beach, CA.}, number = {Paper No. 306}, language = {en} } @article{ZellnerHierlMuelleretal., author = {Zellner, Johannes and Hierl, Katja and Mueller, Michael and Pfeifer, Christian and Berner, Arne and Dienstknecht, Thomas and Krutsch, Werner and Geis, Sebastian and Gehmert, Sebastian and Kujat, Richard and Dendorfer, Sebastian and Prantl, Lukas and Nerlich, Michael and Angele, Peter}, title = {Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone}, series = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, volume = {101}, journal = {Journal of Biomedical Materials Research Part B Applied Biomaterials}, number = {7}, editor = {Gilbert, Jeremy}, doi = {10.1002/jbm.b.32922}, pages = {1133 -- 1142}, abstract = {Meniscal tears in the avascular zone have a poor self-healing potential, however partial meniscectomy predisposes the knee for early osteoarthritis. Tissue engineering with mesenchymal stem cells and a hyaluronan collagen based scaffold is a promising approach to repair meniscal tears in the avascular zone. 4 mm longitudinal meniscal tears in the avascular zone of lateral menisci of New Zealand White Rabbits were performed. The defect was left empty, sutured with a 5-0 suture or filled with a hyaluronan/collagen composite matrix without cells, with platelet rich plasma or with autologous mesenchymal stem cells. Matrices with stem cells were in part precultured in chondrogenic medium for 14 days prior to the implantation. Menisci were harvested at 6 and 12 weeks. The developed repair tissue was analyzed macroscopically, histologically and biomechanically. Untreated defects, defects treated with suture alone, with cell-free or with platelet rich plasma seeded implants showed a muted fibrous healing response. The implantation of stem cell-matrix constructs initiated fibrocartilage-like repair tissue, with better integration and biomechanical properties in the precultured stem cell-matrix group. A hyaluronan-collagen based composite scaffold seeded with mesenchymal stem cells is more effective in the repair avascular meniscal tear with stable meniscus-like tissue and to restore the native meniscus.}, subject = {Meniskusschaden}, language = {en} } @inproceedings{GrossSuessVerkerkeetal., author = {Gross, Simon and S{\"u}ß, Franz and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Simulating fatigue in musculoskeletal models using surface electromyography, ECCOMAS Congress, Crete, Greece, 201}, series = {ECCOMAS Congress, Crete, Greece, 2016}, booktitle = {ECCOMAS Congress, Crete, Greece, 2016}, language = {en} } @article{PutzerEhrlichRasmussenetal., author = {Putzer, Michael and Ehrlich, Ingo and Rasmussen, John and Gebbeken, Norbert and Dendorfer, Sebastian}, title = {Sensitivity of lumbar spine loading to anatomical parameters}, series = {Journal of Biomechanics}, volume = {49}, journal = {Journal of Biomechanics}, number = {6}, publisher = {Elsevier Science}, doi = {10.1016/j.jbiomech.2015.11.003}, pages = {953 -- 958}, abstract = {Musculoskeletal simulations of lumbar spine loading rely on a geometrical representation of the anatomy. However, this data has an inherent inaccuracy. This study evaluates the influence of defined geometrical parameters on lumbar spine loading utilising five parametrised musculoskeletal lumbar spine models for four different postures. The influence of the dimensions of vertebral body, disc, posterior parts of the vertebrae as well as the curvature of the lumbar spine was studied. Additionally, simulations with combinations of selected parameters were conducted. Changes in L4/L5 resultant joint force were used as outcome variable. Variations of the vertebral body height, disc height, transverse process width and the curvature of the lumbar spine were the most influential. These parameters can be easily acquired from X-rays and should be used to morph a musculoskeletal lumbar spine model for subject-specific approaches with respect to bone geometry. Furthermore, the model was very sensitive to uncommon configurations and therefore, it is advised that stiffness properties of discs and ligaments should be individualised.}, subject = {Wirbels{\"a}ule}, language = {en} } @inproceedings{PutzerDendorfer, author = {Putzer, Michael and Dendorfer, Sebastian}, title = {Sensitivity of lumbar spine loading to anatomical parameters}, series = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, booktitle = {International Workshop on Spine Loading and Deformation: From Loading to Recovery, 2-4 July 2015, Julius Wolff Institute, Charit{\´e}-Universitatsmedizin Berlin, Germany}, language = {en} } @misc{MelznerEngelhardtSuessetal., author = {Melzner, Maximilian and Engelhardt, Leonard and S{\"u}ß, Friedrich and Dendorfer, Sebastian}, title = {Sensitivity evaluation of a musculoskeletal hand model using Latin hypercube sampling}, series = {ESMAC 2020 Abstracts}, volume = {81}, journal = {ESMAC 2020 Abstracts}, number = {Suppl. 1}, publisher = {Elsevier}, doi = {10.1016/j.gaitpost.2020.08.008}, language = {en} } @article{DendorferMelzner, author = {Dendorfer, Sebastian and Melzner, Maximilian}, title = {R{\"u}ckenschmerzen bei Geburtshelfer:innen. Die Haltung macht's.}, series = {Deutsche Hebammen-Zeitschrift}, volume = {74}, journal = {Deutsche Hebammen-Zeitschrift}, number = {11}, publisher = {Staude}, address = {Hannover}, issn = {0012-026X}, pages = {60 -- 62}, abstract = {F{\"u}r Mutter und Kind konnte das Risiko der Geburt durch die Weiterentwicklung der Medizin drastisch reduziert werden. Doch wie ist es um das Wohl derer bestellt, die die Geb{\"a}rende unterst{\"u}tzen? Eine Studie der Ostbayerischen Technischen Hochschule Regensburg hat sich mit den muskuloskelettalen Beschwerden von Geburtshelfer:innen auseinandergesetzt}, language = {de} } @article{BenditzAuerSpoerreretal., author = {Benditz, Achim and Auer, Simon and Sp{\"o}rrer, J.F. and Wolkerstorfer, S. and Grifka, Joachim and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Regarding loads after spinal fusion, every level should be seen separately: a musculoskeletal analysis}, series = {European Spine Journal}, volume = {27}, journal = {European Spine Journal}, number = {8}, publisher = {Springer-Verlag}, doi = {10.1007/s00586-018-5476-5}, pages = {1905 -- 1910}, abstract = {The number of spinal fusion surgeries is steadily increasing and biomechanical consequences are still in debate. The aim of this study is to provide biomechanical insights into the sagittal balance of the spine and to compare spinal load before and after spinal fusion. METHOD: The joint reaction forces of 52 patients were analyzed in proximo-distal and antero-posterior direction from the levels T12-L1 to L5-S1 using musculoskeletal simulations. RESULTS: In 104 simulations, pre-surgical forces were equal to post-surgical. The levels L4-L5 and T12-L1, however, showed increased spinal forces compression forces with higher sagittal displacement. Improved restauration of sagittal balance was accompanied by lower spinal load. AP shear stress, interestingly decreased with sagittal imbalance. CONCLUSION: Imbalanced spines have a risk of increased compression forces at Th12-L1. L4-L5 always has increased spinal loads. These slides can be retrieved under Electronic Supplementary Material.}, subject = {Biomechanische Analyse}, language = {en} } @inproceedings{StrieglKujatDendorfer, author = {Striegl, B. and Kujat, Richard and Dendorfer, Sebastian}, title = {Quantitative analysis of cartilage surface by confocal laser scanning microscopy}, series = {Biomedizinische Technik}, volume = {59}, booktitle = {Biomedizinische Technik}, number = {s1-A}, doi = {10.1515/bmt-2014-4012}, pages = {24}, language = {en} } @inproceedings{KubowitschDendorfer, author = {Kubowitsch, Simone and Dendorfer, Sebastian}, title = {Psychologie und Biomechanik - Integrierte Betrachtung von Muskelrekrutierung}, series = {Jahrestagung der Deutschen Gesellschaft f{\"u}r Biofeedback e. V., Regensburg, 2018}, booktitle = {Jahrestagung der Deutschen Gesellschaft f{\"u}r Biofeedback e. V., Regensburg, 2018}, language = {de} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @inproceedings{BillingGoetzWeberetal., author = {Billing, A. and G{\"o}tz, J. and Weber, Tim and Dendorfer, Sebastian}, title = {Positionsanalyse von winkelstabilen Plattenosteosynthesesystemen zur Versorgung von Metatarsalfrakturen mit Hilfe von patientenspezifischen biomechanischen Modellen}, series = {Vereinigung S{\"u}ddeutscher Orthop{\"a}den und Unfallchirurgen Jahrestagung 2015, Baden-Baden, Germany}, booktitle = {Vereinigung S{\"u}ddeutscher Orthop{\"a}den und Unfallchirurgen Jahrestagung 2015, Baden-Baden, Germany}, language = {de} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Patientenindividuelle biomechanisch optimierte Rehabilitation}, series = {Prim{\"a}r- und Revisionsendoprothetik des Kniegelenks. Trends und zuk{\"u}nftige Herausforderungen. Regensburg 2023}, journal = {Prim{\"a}r- und Revisionsendoprothetik des Kniegelenks. Trends und zuk{\"u}nftige Herausforderungen. Regensburg 2023}, language = {de} } @article{RenkawitzDendorfer, author = {Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Orthopedic navigation technology and biomechanical evaluation for total hip replacement}, series = {Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine}, volume = {226}, journal = {Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine}, number = {12}, doi = {10.1177/0954411912458746}, pages = {897 -- 898}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @inproceedings{GalibarovDendorferChristensen, author = {Galibarov, Pavel E. and Dendorfer, Sebastian and Christensen, Soeren Toerholm}, title = {On modelling spine curvature dependent on muscular and external forces in multibody dynamics system}, series = {International Society of Biomechanics (ISB), 13th congress, 2011, Brussels, Belgium}, booktitle = {International Society of Biomechanics (ISB), 13th congress, 2011, Brussels, Belgium}, pages = {2}, abstract = {This paper presents a computational approach for investigating effect of muscular and external forces on curvature of the lumbar spine. Multibody dynamics system is used to compute the lumbar spine curvature using a force-dependent kinematics facility, e.g. this method allows releasing some degrees of freedom in order to be computed based on the current load configuration.}, language = {en} } @inproceedings{SuessPutzerDendorfer, author = {S{\"u}ß, Franz and Putzer, Michael and Dendorfer, Sebastian}, title = {Numerische und experimentelle Untersuchungen an der Wirbels{\"a}ule}, series = {Forschungssymposium Bad Abbach, Germany, 2015}, booktitle = {Forschungssymposium Bad Abbach, Germany, 2015}, language = {de} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tim}, title = {Navigated Femur First Total Hip Arthroplasty leads to improved Biomechanical Outcome after surgery}, series = {ORS annual meeting, Las Vegas, USA, 2015}, booktitle = {ORS annual meeting, Las Vegas, USA, 2015}, language = {en} } @techreport{PutzerRasmussenEhrlichetal., author = {Putzer, Michael and Rasmussen, John and Ehrlich, Ingo and Gebbeken, Norbert and Dendorfer, Sebastian}, title = {Muskuloskelettale Simulation zur Untersuchung des Einflusses geometrischer Parameter der Wirbelk{\"o}rper auf die Belastung der Lendenwirbels{\"a}ule}, series = {Forschungsbericht 2013 / Ostbayerische Technische Hochschule Regensburg}, journal = {Forschungsbericht 2013 / Ostbayerische Technische Hochschule Regensburg}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, pages = {60 -- 61}, language = {de} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {Muskuloskelettale Simulation - Implikationen f{\"u}r die H{\"u}ftendoprothetik}, series = {Prim{\"a}r- und Revisionsendoprothetik des H{\"u}ftgelenks Trends und zuk{\"u}nftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg}, journal = {Prim{\"a}r- und Revisionsendoprothetik des H{\"u}ftgelenks Trends und zuk{\"u}nftige Herausforderungen, 11.-12.11.2022, OTH Ostbayerische Technische Hochschule, Regensburg}, language = {de} } @misc{MelznerPfeiferSuessetal., author = {Melzner, Maximilian and Pfeifer, Christian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Muskuloskeletal analysis of elbow stability for common injury patterns}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {654}, language = {en} } @inproceedings{PutzerPenzkoferEhrlichetal., author = {Putzer, Michael and Penzkofer, Rainer and Ehrlich, Ingo and Rasmussen, John and Gebbeken, Norbert and Dendorfer, Sebastian}, title = {Musculoskeletal simulations to investigate the influence of vertebral geometrical parameters on lumbar spine loading}, series = {7th World Congress of Biomechanics, Boston, United States, 04/07/14 -11/07/14}, booktitle = {7th World Congress of Biomechanics, Boston, United States, 04/07/14 -11/07/14}, language = {de} } @article{MelznerPfeifferSuessetal., author = {Melzner, Maximilian and Pfeiffer, Christian and Suess, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal simulation of elbow stability for common injury patterns}, series = {Journal of Orthopaedic Research}, volume = {41}, journal = {Journal of Orthopaedic Research}, number = {6}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54819}, pages = {1356 -- 1364}, abstract = {Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding non-operative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability.}, language = {en} } @misc{AurbachSpickaSuessetal., author = {Aurbach, Maximilian and Spicka, Jan and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal modelling of the shoulder - effects on muscle recruitment and joint reaction force}, series = {European Society of Biomechanics meeting 2019, Vienna, Austria}, journal = {European Society of Biomechanics meeting 2019, Vienna, Austria}, language = {en} } @inproceedings{WeberDendorferBulstraetal., author = {Weber, Tim and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Musculoskeletal modeling for orthopedic surgery - Applications and chances}, series = {Orthopedics meets Engineering, Regensburg, 2015}, booktitle = {Orthopedics meets Engineering, Regensburg, 2015}, language = {en} } @article{DendorferWeberKennedy, author = {Dendorfer, Sebastian and Weber, Tim and Kennedy, O.}, title = {Musculoskeletal modeling for hip replacement outcome analyses and other applications}, series = {The Journal of the American Academy of Orthopaedic Surgeons}, volume = {22}, journal = {The Journal of the American Academy of Orthopaedic Surgeons}, number = {4}, doi = {10.5435/JAAOS-22-04-268}, pages = {268 -- 269}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @misc{MelznerIsmailRušavyetal., author = {Melzner, Maximilian and Ismail, Khaled and Rušav{\´y}, Zdeněk and Kališ, Vladim{\´i}r and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal Lower Back Load of Accoucheurs During Delivery}, series = {26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy}, journal = {26th Congress of the European Society of Biomechanics, July 11-14, 2021, Milan, Italy}, address = {Milan}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-20208}, abstract = {With the progress in modern medicine, it was possible to significantly reduce the risks of birth for mother and child. One aspect that has received less attention so far is the risk of injury to the accoucheurs (obstetricians and midwives) during the birth process. Indeed, studies indicate that 92\% of midwives suffer from musculoskeletal disorders, with the lower back being the main cause of complaints (72\%). The aim of this study was to investigate two commonly used postural techniques used by accoucheurs during childbirth and to analyze the resulting load on the lower back using the AnyBodyTM musculoskeletal simulation software.}, language = {en} } @article{MelznerIsmailRušavyetal., author = {Melzner, Maximilian and Ismail, Khaled and Rušavy, Zdenek and Kališ, Vladim{\´i}r and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal lower back load of accoucheurs during childbirth - A pilot and feasibility study}, series = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, journal = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, number = {264}, publisher = {Elsevier}, doi = {10.1016/j.ejogrb.2021.07.042}, pages = {306 -- 313}, abstract = {Introduction: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. Methods: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. Results: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. Conclusion: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system.}, language = {en} } @inproceedings{KubowitschSuessJansenetal., author = {Kubowitsch, Simone and S{\"u}ß, Franz and Jansen, Petra and Dendorfer, Sebastian}, title = {Muscular imbalances during experimentally induced stress}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @article{AuerKurbowitschSuessetal., author = {Auer, Simon and Kurbowitsch, Simone and S{\"u}ß, Franz and Renkawitz, Tobias and Krutsch, Werner and Dendorfer, Sebastian}, title = {Mental stress reduces performance and changes musculoskeletal loading in football-related movements}, series = {Science and Medicine in Football}, volume = {5}, journal = {Science and Medicine in Football}, number = {4}, publisher = {Taylor \& Francis}, doi = {10.1080/24733938.2020.1860253}, pages = {323 -- 329}, abstract = {Purpose: Football players have a high risk of leg muscle injuries, especially when exposed to mental stress. Hence, this study investigated the musculoskeletal response of elite youth football players during highly dynamic movements under stress. The hypothesis is that mental stress reduces performance and changes the muscular forces exerted. Materials \& methods: Twelve elite youth football players were subjected to mental stress while performing sports-specific change-of-direction movements. A modified version of the d2 attention test was used as stressor. The kinetics are computed using inverse dynamics. Running times and exerted forces of injury-prone muscles were analysed. Results: The stressor runs were rated more mentally demanding by the players (p = 0.006, rs = 0.37) with unchanged physical demand (p = 0.777, rs = 0.45). This resulted in 10\% longer running times under stress (p < 0.001, d = -1.62). The musculoskeletal analysis revealed higher peak muscle forces under mental stress for some players but not for others. Discussion: The study shows that motion capture combined with musculoskeletal computation is suitable to analyse the effects of stress on athletes in highly dynamic movements. For the first time in football medicine, our data quantifies an association between mental stress with reduced football players' performance and changes in muscle force.}, language = {en} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {Mechanobiology - Impact on regeneration and degradation}, series = {Translations in Regenerative Medicine, TIRM and FIFA Symposium, Regensburg, 2015}, booktitle = {Translations in Regenerative Medicine, TIRM and FIFA Symposium, Regensburg, 2015}, language = {en} } @article{HoenickaLehleJacobsetal., author = {Hoenicka, M. and Lehle, Karla and Jacobs, V. R. and Dendorfer, Sebastian and Kostorz, A. and Schmid, F. X. and Birnbaum, D. E.}, title = {Mechanical and seeding properties of human umbilical vein - a potential scaffold for a tissue-engineered vessel graft}, series = {The Thoracic and Cardiovascular Surgeon}, volume = {55}, journal = {The Thoracic and Cardiovascular Surgeon}, number = {S 1}, publisher = {Thieme}, doi = {10.1055/s-2007-967592}, pages = {P_37}, abstract = {Objectives: The mechanical properties and seeding with endothelial cells were investigated in fresh and cryopreserved human umbilical vein. Methods: Human umbilical veins (HUV) were frozen in Euro-Collins/1M DMSO at -1°C/min and stored in liquid nitrogen. Stress-strain relationships of fresh and thawed veins were determined in an uniaxial tension-testing rig. HUV endothelial cells (HUVEC) were seeded onto denuded HUV under static conditions and grown for 3d. Luminal surfaces were analyzed by scanning electron microscopy. Calcein-stained cells were seeded hyperconfluently to determine the cell retention capacity of fresh and cryopreserved veins. Results: The stress-strain relationships of HUV followed a biphasic pattern typical for natural vessels. Neither the failure stress (2.71±0.36 vs. 3.25±0.97 N, n=3) nor the displacement required to achieve failure (9.73±0.9 vs. 7.43±2.07mm, n=3) were altered by cryopreservation. The burst pressure was estimated as approx. 1000mm Hg within the limitations of the uniaxial model. HUVEC seeded onto denuded HUV formed patches (at 9E3 cells per cm2) or an almost confluent endothelium (at 3E4 cells per cm2) within three days. The capacity to retain seeded HUVEC of denuded HUV was not altered by cryopreservation (1.15±0.08E5 vs. 1.26±0.14E5 cells per cm2, n=6). Conclusions: The burst pressure of HUV seems to be sufficiently high for the human arterial circulation and is not altered by cryopreservation. HUVEC can establish a confluent endothelium on denuded HUV. Therefore HUV appears to be a suitable storable scaffold for vascular tissue engineering.}, subject = {Nabelvene}, language = {en} } @inproceedings{WeberDendorferDullienetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Dullien, Silvia and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Measuring functional outcome after total hip replacement with subject-specific hip joint loading}, series = {Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine}, volume = {226}, booktitle = {Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine}, number = {12}, doi = {10.1177/0954411912447728}, pages = {939 -- 946}, abstract = {Total hip replacement is an often-performed orthopedic surgical procedure; the amount of procedures undertaken will increase since our life expectancy is growing. In order to optimize function, hip biomechanics should be restored to as near normal as possible. The goal of this pilot study was to determine whether or not it is feasible to compute the vectorial hip reaction force pathways on the head of the prosthesis and the force angles relative to the cup of the prosthesis that occur during gait in total hip replacement patients, serving as an objective measurement of the functional outcome following hip replacement. A three-dimensional gait analysis, measuring ground reaction forces and kinematics, was performed. The data retrieved from the gait analysis was used as the input for the musculoskeletal model to compute vectorial joint reaction forces for data processing. To evaluate the position and orientation of the joint reaction forces, the force path, as well as the force angles for the operated and non-operated joint, has been calculated during the stance phase of the specific leg. The force path for subject 2 on the non-operated side is only located in the posterior-lateral quarter, as is the force path for subject 1. In contrast to this subject, the force path for subject 2 at the operated hip joint can be found only within the anterior quarter of the head of the implant, where it is nearly equally distributed in the medio-lateral half of the prosthesis head. The force-inclination angles on the cup of subject 1, with respect to the plane of the socket face, indicates that the force vector is mainly positioned in the same quadrant when compared with subject 2 (in a cup-fixed coordinate system). The force-anteversion angle behaves similarly to the force-inclination angle, even when the effects are not as pronounced. The proposed methods in this article are aiming to define two functional outcomes of total hip replacement that are related to wear and rim loading. It is accepted that wear is not only a function of time, but a function of use. Owing to the methods listed in this article, we are able to determine a) the applied force and b) the sliding distance (force pathway) in a subject-specific manner. The computed hip-reaction force angles and the distance to the rim cup are a measurement for cup or rim loading, and occurs in the so-called safe-zones. This method may well give us insight into the biomechanical situation during gait, after receiving total hip replacement, that we need to fully understand the mechanisms acting on a hip joint and to prove a possible increase of functional outcome after receiving total hip replacement.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{RenkawitzWeberDullienetal., author = {Renkawitz, Tobias and Weber, Tim A. and Dullien, Silvia and Woerner, Michael and Dendorfer, Sebastian and Grifka, Joachim and Weber, Markus}, title = {Leg length and offset differences above 5 mm after total hip arthroplasty are associated with altered gait kinematics}, series = {Gait \& Posture}, volume = {vol. 49}, journal = {Gait \& Posture}, doi = {10.1016/j.gaitpost.2016.07.011}, pages = {196 -- 201}, abstract = {We aimed to investigate the relationship between postoperative leg length/offset (LL/OS) reconstruction and gait performance after total hip arthroplasty (THA). In the course of a prospective randomized controlled trial, 60 patients with unilateral hip arthrosis received cementless THA through a minimally-invasive anterolateral surgical approach. One year post-operatively, LL and global OS restoration were analyzed and compared to the contralateral hip on AP pelvic radiographs. The combined postoperative limb length/OS reconstruction of the operated hip was categorized as restored (within 5 mm) or non-restored (more than 5 mm reduction or more than 5 mm increment). The acetabular component inclination, anteversion and femoral component anteversion were evaluated using CT scans of the pelvis and the femur. 3D gait analysis of the lower extremity and patient related outcome measures (HHS, HOOS, EQ-5D) were obtained pre-operatively, six months and twelve months post-operatively by an observer blinded to radiographic results. Component position of cup and stem was comparable between the restored and non-restored group. Combined LL and OS restoration within 5 mm resulted in higher Froude number (p < 0.001), normalized walking speed (p < 0.001) and hip range-of-motion (ROM) (p = 0.004) during gait twelve months postoperatively, whereas gait symmetry was comparable regardless of LL and OS reconstruction at both examinations. Clinical scores did not show any relevant association between the accuracy of LL or OS reconstruction and gait six/twelve months after THA. In summary, postoperative LL/OS discrepancies larger than 5 mm relate to unphysiological gait kinematics within the first year after THA. DRKS00000739, German Clinical Trials Register.}, language = {en} } @article{AuerKubowitschDendorfer, author = {Auer, Simon and Kubowitsch, Simone and Dendorfer, Sebastian}, title = {Kombinierter Einfluss von psychologischen und biomechanischen Faktoren auf die muskul{\"a}ren Belastungen beim Fußballspielen}, series = {Die Orthop{\"a}die}, volume = {52}, journal = {Die Orthop{\"a}die}, number = {11}, publisher = {Springer}, doi = {10.1007/s00132-023-04437-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-65113}, pages = {1 -- 6}, abstract = {When mental stress and musculoskeletal loading interact, the risk for injury increases due to altered body kinematics and increased muscle tension. These changes can be detected with musculoskeletal models, and mental loading and stress must be analyzed at emotional, cognitive, and behavioral levels. To investigate these kinematic and loading changes under stress, competitive athletes were subjected to mental stress during highly dynamic movements, and musculoskeletal models were used to analyze the biomechanical loading. It was shown that under mental stress, independent of the subjective perception, a strong change in muscle forces can occur. Accordingly, competitive athletes should undergo screenings to assess individual movement patterns and promote general stress resilience.}, language = {de} } @article{AuerKrutschRenkawitzetal., author = {Auer, Simon and Krutsch, Werner and Renkawitz, Tobias and Kubowitsch, Simone and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Kognitiver Stress f{\"u}hrt zu unphysiologisch erh{\"o}hten Kniebelastungen im Profifußball}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {2}, publisher = {Elsevier}, doi = {10.1016/j.orthtr.2020.04.122}, pages = {202 -- 203}, language = {de} } @article{WeberSuessJerabeketal., author = {Weber, Markus and Suess, Franz and Jerabek, Seth and Meyer, Matthias and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty}, series = {Journal of Orthopaedic Research}, volume = {40}, journal = {Journal of Orthopaedic Research}, number = {4}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25106}, pages = {846 -- 853}, abstract = {Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7\% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of -1.9 ± 2.2° (p < .001) for cup inclination and -15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from -4.4 to 4.6° for inclination and from -7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @misc{Dendorfer, author = {Dendorfer, Sebastian}, title = {KI-basierte mechanische Modelle f{\"u}r Pr{\"a}vention, Diagnostik und Rehabilitation}, series = {Serien-Webmeeting zu AI - KI-basierte Bildanalyse zur computer-unterst{\"u}tzten Frakturerkennung, 09.11.22}, journal = {Serien-Webmeeting zu AI - KI-basierte Bildanalyse zur computer-unterst{\"u}tzten Frakturerkennung, 09.11.22}, organization = {Deutsche Gesellschaft f{\"u}r Orthop{\"a}die und Orthop{\"a}dische Chirurgie}, language = {de} } @inproceedings{GrossVerkerkeDendorfer, author = {Gross, Simon and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of external load dependent static and dynamic muscle fatigue}, series = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, booktitle = {23th Congress of the European Society of Biomechanics, Sevilla, Spain, 2017}, language = {en} } @inproceedings{SuessKubowitschVerkerkeetal., author = {S{\"u}ß, Franz and Kubowitsch, Simone and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian}, title = {Investigation of cognitive stress induced changes in spinal disc forces due to altered kinematics and muscle activity}, series = {World Congress Biomechanics, Dublin, 2018}, booktitle = {World Congress Biomechanics, Dublin, 2018}, language = {en} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {Innovationen in der Medizintechnik}, series = {Oberpfalztag Weiherhammer, Nov. 2013}, booktitle = {Oberpfalztag Weiherhammer, Nov. 2013}, language = {de} } @inproceedings{PutzerGalibarovDendorfer, author = {Putzer, Michael and Galibarov, Pavel E. and Dendorfer, Sebastian}, title = {Influence of vertebral parameters on lumbar spine loading}, series = {Pre-meeting SpineFX, Eurospine 2013, Liverpool, UK}, booktitle = {Pre-meeting SpineFX, Eurospine 2013, Liverpool, UK}, language = {en} } @article{VisscherWyssSinghetal., author = {Visscher, Rosa and Wyss, C. and Singh, Navrag B. and Taylor, William R. and Dendorfer, Sebastian and Rutz, E. and Brunner, Reinald}, title = {Influence of TAL-TATS surgery on energy production of Tricepts Surae - A musculoskeletal modeling evaluation}, series = {Gait \& Posture}, volume = {81}, journal = {Gait \& Posture}, number = {Suppl. 1}, publisher = {Elsevier}, doi = {10.1016/j.gaitpost.2020.08.090}, pages = {381 -- 382}, language = {en} } @misc{EgerBergstraesserDendorferetal., author = {Eger, Maximilian and Bergstraesser, Marcel and Dendorfer, Sebastian and Lenich, Andreas and Pfeifer, Christian}, title = {Influence of radial head prosthetic design on humeroradial stability: Validation of a test rig therefore}, series = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, journal = {DOKU2022, Deutscher Kongress f{\"u}r Orthop{\"a}die und Unfallchirurgie, 25.-28. 10.2022, Berlin}, publisher = {German Medical Science GMS Publishing House}, address = {D{\"u}sseldorf}, doi = {10.3205/22dkou611}, url = {http://nbn-resolving.de/urn:nbn:de:0183-22dkou6115}, language = {en} } @article{WeberAlMunajjedVerkerkeetal., author = {Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Dendorfer, Sebastian and Renkawitz, Tobias}, title = {Influence of minimally invasive total hip replacement on hip reaction forces and their orientations}, series = {Journal of Orthopaedic Research}, volume = {32}, journal = {Journal of Orthopaedic Research}, number = {12}, doi = {10.1002/jor.22710}, pages = {1680 -- 1687}, abstract = {Minimally invasive surgery (MIS) is becoming increasingly popular. Supporters claim that the main advantages of MIS total hip replacement (THR) are less pain and a faster rehabilitation and recovery. Critics claim that safety and efficacy of MIS are yet to be determined. We focused on a biomechanical comparison between surgical standard and MIS approaches for THR during the early recovery of patients. A validated, parameterized musculoskeletal model was set to perform a squat of a 50th percentile healthy European male. A bilateral motion was chosen to investigate effects on the contralateral side. Surgical approaches were simulated by excluding the incised muscles from the computations. Resulting hip reaction forces and their symmetry and orientation were analyzed. MIS THR seemed less influential on the symmetry index of hip reaction forces between the operated and nonoperated leg when compared to the standard lateral approach. Hip reaction forces at peak loads of the standard transgluteal approach were 24\% higher on the contralateral side when compared to MIS approaches. Our results suggest that MIS THR contributes to a greater symmetry of hip reaction forces in absolute value as well as force-orientation following THR.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @inproceedings{SpreiterGalibarovDendorferetal., author = {Spreiter, G. and Galibarov, Pavel E. and Dendorfer, Sebastian and Ferguson, Stephen J.}, title = {Influence of kyphosis on spinal loading}, series = {10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) Meeting, 11. - 14. April 2012, Berlin}, booktitle = {10th International Symposium Computer Methods in Biomechanics and Biomedical Engineering (CMBBE) Meeting, 11. - 14. April 2012, Berlin}, language = {en} } @inproceedings{MuehlingEnglertDendorfer, author = {Muehling, M. and Englert, Carsten and Dendorfer, Sebastian}, title = {Influence of biceps tenotomy and tenodesis on post-operative shoulder strength}, series = {Jahrestagung der Deutschen Gesellschaft f{\"u}r Biomechanik, March 2017, Hannover, Germany}, booktitle = {Jahrestagung der Deutschen Gesellschaft f{\"u}r Biomechanik, March 2017, Hannover, Germany}, language = {en} } @misc{KoeglerIsmailRusavyetal., author = {K{\"o}gler, Michael and Ismail, Khaled M. and Rusavy, Zdenek and Kalis, Vladimir and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Influence of bed height and stance on accoucheurs lower back and glenohumeral load during simulated childbirth}, series = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, journal = {31st meeting of Czech Urogynaecological Society, Prague, 2022}, language = {en} } @article{WeberMerleNawabietal., author = {Weber, Markus and Merle, Christian and Nawabi, Danyal H. and Dendorfer, Sebastian and Grifka, Joachim and Renkawitz, Tobias}, title = {Inaccurate offset restoration in total hip arthroplasty results in reduced range of motion}, series = {Scientific Reports}, volume = {10}, journal = {Scientific Reports}, number = {13208}, publisher = {Nature}, doi = {10.1038/s41598-020-70059-1}, pages = {9}, abstract = {Offset restoration in total hip arthroplasty (THA) is associated with postoperative range of motion (ROM) and gait kinematics. We aimed to research into the impact of high offset (HO) and standard stems on postoperative ROM. 121 patients received cementless THA through a minimally-invasive anterolateral approach. A 360° hip ROM analysis software calculated impingement-free hip movement based on postoperative 3D-CTs compared to ROM values necessary for activities of daily living (ADL). The same model was then run a second time after changing the stem geometry between standard and HO configuration with the implants in the same position. HO stems showed higher ROM for all directions between 4.6 and 8.9° (p < 0.001) compared with standard stems but with high interindividual variability. In the subgroup with HO stems for intraoperative offset restoration, the increase in ROM was even higher for all ROM directions with values between 6.1 and 14.4° (p < 0.001) compared to offset underrestoration with standard stems. Avoiding offset underrestoration resulted in a higher amount of patients of over 20\% for each ROM direction that fulfilled the criteria for ADL (p < 0.001). In contrast, in patients with standard stems for offset restoration ROM did increase but not clinically relevant by offset overcorrection for all directions between 3.1 and 6.1° (p < 0.001). Offset overcorrection by replacing standard with HO stems improved ROM for ADL in a low number of patients below 10\% (p > 0.03). Patient-individual restoration of offset is crucial for free ROM in THA. Both over and underrestoration of offset should be avoided.}, language = {en} } @inproceedings{AurbachWagnerSuessetal., author = {Aurbach, Maximilian and Wagner, Kilian and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Implementation and Validation of Human Kinematics Measured Using IMUs for Musculoskeletal Simulations by the Evaluation of Joint Reaction Forces}, series = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina}, volume = {Vol. 62}, booktitle = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017, Sarajevo, Bosnia and Herzegovina}, editor = {Badnjevic, Almir}, publisher = {Springer}, address = {Singapore}, doi = {10.1007/978-981-10-4166-2_31}, pages = {205 -- 211}, abstract = {The gold standard for the analysis of human kinematics and kinetics is a camera-based motion capture system in combination with force measurement platforms. Alternatively, inertial measurement units can be utilized to obtain human kinematics, while ground reaction forces are computed from full body dynamics. This setup represents a system independent from the spatial confinement of a gait laboratory. The aim of this study is the comparison of the two methods by the investigation of lower limb kinematics and the resulting joint reaction forces within the ankle-, knee- and hip joints. For this purpose, human motion during gait was captured simultaneously by both measurement techniques. 13 trials from 8 different test subjects were evaluated in total. IMU data was processed with a quaternion based Kalman Filter. The data sets were implemented into a musculoskeletal simulation program in order to drive a virtual human body model. Each sensor was aligned to the gravitational and magnetic field vectors of the earth. The angles of flexions, extensions and rotations were analyzed to determine kinematic differences. Joint reaction forces defined kinetic dissimilarities. The overall kinematic differences of both models yielded root mean square errors of 7.62°, 6.02°, 4.95°, 2.79°, 2.38° and 3.56° for ankle flexion, subtalar eversion, knee flexion, hip external rotation, hip abduction and hip flexion, respectively. The proximo-distal differences in force peaks between the models yielded overall for the ankle, 57.33 \%Bodyweight(BW) ± 46.86 \%BW (16.66 \%(Maximum peak to peak) ± 13.62 \%) for the knee 37.09 \%BW ± 29.33 \%BW (17.65 \% ± 15.44 \%) and 32.03 \%BW ± 24.33 \%BW (15.6 \% ± 12.54 \%) for the hip. The overall outcome of this work investigated an approach independent of the common setup of the gait laboratory, thus enabling a cheaper and more flexible technology as an alternative. However, kinematic and thus kinetic differences remain rather large. Future work aims to improve the contact criterion for the calculation of the ground reaction forces and the implementation of a full-body calibration algorithm for the IMU system in order to counteract magnetic field disturbances.}, subject = {Bewegungsapparat}, language = {en} } @inproceedings{DendorferKubowitschSuess, author = {Dendorfer, Sebastian and Kubowitsch, Simone and S{\"u}ß, Franz}, title = {How to determine the effect of working conditions on the human body}, series = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, booktitle = {11th International Scientific Conference on Production Engineering DEVELOPMENT AND MODERNIZATION OF PRODUCTION (RIM 2017), Sarajevo, Bosnia and Herzegovina}, abstract = {Work places and conditions strains the human body, both psychologically and biomechanically. In order to analyse working conditions and in the following to improve them, detailed knowledge about the effect of the different stressors on the body is needed. This manuscript discusses methods on how to evaluate biomechanical and mental loading and its effect on the musculoskeletal system. A possible workflow for the analysis is presented.}, subject = {Arbeitsbedingungen}, language = {en} } @inproceedings{Dendorfer, author = {Dendorfer, Sebastian}, title = {How much iron to pump? The determination of muscle forces for activities of daily living}, series = {DGU, Berlin, 2008}, booktitle = {DGU, Berlin, 2008}, language = {en} } @incollection{DendorferMaierHammer, author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Hammer, Josef}, title = {How do age and anisotropy affect the fatigue behaviour of cancellous bone?}, series = {Medicine Meets Engineering}, booktitle = {Medicine Meets Engineering}, publisher = {IOS Press}, pages = {68 -- 74}, abstract = {The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions not aligned with the main physiological axis remains unclear. Furthermore age effects on the fatigue behaviour are not well described. In the present study, different groups of human vertebral cancellous bone were exposed to cyclic compression. The inital modulus and therefore lifetimes were found to be highly dependent on age. The decrease in both with increasing age was much more pronounced in specimens which were not aligned with the main physiological axis. This implies that old bone is much more sensitive to (cyclic) failure loads in general but particularly to loads which are not coincident with the physiological main axis.}, subject = {Knochenbruch}, language = {en} } @article{DendorferGschossman, author = {Dendorfer, Sebastian and Gschoßman, Lukas}, title = {Hightech in der Rehabiliation}, series = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, journal = {BVOU Infobrief: Hightech in Orthop{\"a}die und Unfallchirurgie}, number = {1}, publisher = {BVOU - Berufsverband f{\"u}r Orthop{\"a}die und Unfallchirurgie e.V.}, address = {Berlin}, issn = {2747-5913}, pages = {9 -- 11}, abstract = {Aufgrund der steigenden Lebenserwartung und dem damit einhergehenden demographischen Wandel wird der Bedarf an Rehabilitations-Behandlungen in absehbarer Zukunft stark ansteigen. Ein Beispiel f{\"u}r diesen Trend ist die physiotherapeutische Behandlung nach Erhalt einer Knie-Totalendoprothese (Knie-TEP). So gehen Modellrechnungen basierend auf dem Bev{\"o}lkerungswachstum und der bisherigen Pr{\"a}valenz von Knie-TEPs davon aus, dass die Anzahl an durchgef{\"u}hrten Eingriffen in einkommensstarken L{\"a}ndern wie Deutschland weiter zunehmen wird. Weiterhin stoßen traditionelle Rehabilitationsverfahren, gerade in strukturschwachen Regionen, schon heute an ihre Grenzen. Deutlich zu sehen war das w{\"a}hrend den Hochphasen der aktuellen Covid-19-Pandemie, als der Kontakt zwischen Therapeut*in und Patient*in fl{\"a}chendeckend eingeschr{\"a}nkt war. Eine erh{\"o}hte Nachfrage nach neuartigen Reha-Angeboten ist die logische Konsequenz. Innovative Konzepte sind daher dringend notwendig, um die daraus resultierenden technischen, sozialen und {\"o}konomischen Herausforderungen zu bew{\"a}ltigen.}, language = {de} } @inproceedings{RobieRasmussenChristensenetal., author = {Robie, Bruce and Rasmussen, John and Christensen, Soeren Toerholm and Dendorfer, Sebastian}, title = {Herniation Induces 55\% Increase in Load of Key Stabilizing Muscle - Impact on Herniation Treatment Devices?}, series = {Spine Arthoplasty Society Meeting, New Orleans, 2010}, booktitle = {Spine Arthoplasty Society Meeting, New Orleans, 2010}, language = {en} } @article{ScheerKubowitschDendorferetal., author = {Scheer, Clara and Kubowitsch, Simone and Dendorfer, Sebastian and Jansen, Petra}, title = {Happy Enough to Relax? How Positive and Negative Emotions Activate Different Muscular Regions in the Back - an Explorative Study}, series = {Frontiers in Psychology}, volume = {Volume 12}, journal = {Frontiers in Psychology}, number = {May 2021}, publisher = {Frontiers Media}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.511746}, abstract = {Embodiment theories have proposed a reciprocal relationship between emotional state and bodily reactions. Besides large body postures, recent studies have found emotions to affect rather subtle bodily expressions, such as slumped or upright sitting posture. This study investigated back muscle activity as an indication of an effect of positive and negative emotions on the sitting position. The electromyography (EMG) activity of six back muscles was recorded in 31 healthy subjects during exposure to positive and negative affective pictures. A resting period was used as a control condition. Increased muscle activity patterns in the back were found during the exposure to negative emotional stimuli, which was mainly measured in the lumbar and thorax regions. The positive emotion condition caused no elevated activity. The findings show that negative emotions lead to increased differential muscle activity in the back and thus corroborate those of previous research that emotion affects subtle bodily expressions.}, language = {en} } @article{WeberDendorferBulstraetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Bulstra, Sjoerd K. and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Gait six month and one-year after computer assisted Femur First THR vs. conventional THR. Results of a patient- and observer- blinded randomized controlled trial}, series = {Gait \& Posture}, volume = {vol. 49}, journal = {Gait \& Posture}, doi = {10.1016/j.gaitpost.2016.06.035}, pages = {418 -- 425}, abstract = {A prospective randomized controlled trial is presented that is used to compare gait performance between the computer assisted Femur First (CAS FF) operation method and conventional THR (CON). 60 patients underwent a 3D gait analysis of the lower extremity at pre-operative, 6 months post-operative and twelve months post-operative. Detailed verification experiments were facilitated to ensure the quality of data as well as to avoid over-interpreting of the data. The results confirm a similar data-quality as reported in the literature. Walking speed, range of motion and symmetry thereof improved over the follow-up period, without significant differences between the groups. While all parameters do significantly increase over the follow-up period for both groups, there were no significant differences between them at any given time-point. Patients undergoing CAS FF showed a trend to improved hip flexion angle indicating a possible long-term benefit.}, language = {en} } @misc{WeberDendorferSuessetal., author = {Weber, Karsten and Dendorfer, Sebastian and S{\"u}ß, Franz and Kubowitsch, Simone and Schratzenstaller, Thomas and Haug, Sonja and Mohr, Christa and Kiesl, Hans and Drechsler, J{\"o}rg and Westner, Markus and Kobus, J{\"o}rn and Schubert, Martin J. W. and Zenger, Stefan and Pietsch, Alexander and Weiß, Josef and Hinterseer, Sebastian and Schieck, Roland and Scherzinger, Stefanie and Klettke, Meike and Ringlstetter, Andreas and St{\"o}rl, Uta and Bissyand{\´e}, Tegawend{\´e} F. and Seeburger, Achim and Schindler, Timo and Ramsauer, Ralf and Kiszka, Jan and K{\"o}lbl, Andreas and Lohmann, Daniel and Mauerer, Wolfgang and Maier, Johannes and Scorna, Ulrike and Palm, Christoph and Soska, Alexander and Mottok, J{\"u}rgen and Ellermeier, Andreas and V{\"o}gele, Daniel and Hierl, Stefan and Briem, Ulrich and Buschmann, Knut and Ehrlich, Ingo and Pongratz, Christian and Pielmeier, Benjamin and Tyroller, Quirin and Monkman, Gareth J. and Gut, Franz and Roth, Carina and Hausler, Peter and Bierl, Rudolf and Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Huang, Yifeng and She, Juncong and Ottl, Andreas and Rieger, Walter and Kraml, Agnes and Poxleitner, Thomas and Hofer, Simon and Heisterkamp, Benjamin and Lerch, Maximilian and Sammer, Nike and Golde, Olivia and Wellnitz, Felix and Schmid, Sandra and Muntschick, Claudia and Kusterle, Wolfgang and Paric, Ivan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Schmidt, Ottfried and Schwanzer, Peter and Rabl, Hans-Peter and Sterner, Michael and Bauer, Franz and Steinmann, Sven and Eckert, Fabian and Hofrichter, Andreas}, title = {Forschungsbericht 2017}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-3-5}, doi = {10.35096/othr/pub-1383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13835}, subject = {Forschung}, language = {de} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} } @misc{BeimlerLeisslEbneretal., author = {Beimler, Josef and Leißl, Caroline and Ebner, Lena and Elsner, Michael and M{\"u}hlbauer, Gerhard and Kohlert, Dieter and Schubert, Martin J. W. and Weiß, Andreas P. and Sterner, Michael and Raith, Thomas and Afranseder, Martin and Krapf, Tobias and Mottok, J{\"u}rgen and Siemers, Christian and Großmann, Benjamin and H{\"o}cherl, Johannes and Schlegl, Thomas and Schneider, Ralph and Milaev, Johannes and Rampelt, Christina and Roduner, Christian and Glowa, Christoph and Bachl, Christoph and Schliekmann, Claus and Gnan, Alfons and Grill, Martin and Ruhland, Karl and Piehler, Thomas and Friers, Daniel and Wels, Harald and Pflug, Kenny and Kucera, Markus and Waas, Thomas and Schlachetzki, Felix and Boy, Sandra and Pemmerl, Josef and Leis, Alexander and Welsch, Andreas F.X. and Graf, Franz and Zenger, Gerhard and Volbert, Klaus and Waas, Thomas and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Heyl, C. and Boldenko, A. and Monkman, Gareth J. and Kujat, Richard and Briem, Ulrich and Hierl, Stefan and Talbot, Sebastian and Schmailzl, Anton and Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert and Valentino, Piergiorgio and Romano, Marco and Ehrlich, Ingo and Furgiuele, Franco and Gebbeken, Norbert and Eisenried, Michael and Jungbauer, Bastian and Hutterer, Albert and Bauhuber, Michael and Mikrievskij, Andreas and Argauer, Monika and Hummel, Helmut and Lechner, Alfred and Liebetruth, Thomas and Schumm, Michael and Joseph, Saskia and Reschke, Michael and Soska, Alexander and Schroll-Decker, Irmgard and Putzer, Michael and Rasmussen, John and Dendorfer, Sebastian and Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias and Haug, Sonja and Rudolph, Clarissa and Zeitler, Annika and Schaubeck, Simon and Steffens, Oliver and Rechenauer, Christian and Schulz-Brize, Thekla and Fleischmann, Florian and Kusterle, Wolfgang and Beer, Anne and Wagner, Bernd and Neidhart, Thomas}, title = {Forschungsbericht 2013}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7990}, pages = {80}, language = {de} } @misc{LautenschlaegerLeisDendorferetal., author = {Lautenschl{\"a}ger, Toni and Leis, Alexander and Dendorfer, Sebastian and Palm, Christoph and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Dams, Florian and Bornmann, Benjamin and Navitski, Aliaksandr and Serbun, Pavel and M{\"u}ller, G{\"u}nter and Liebetruth, Thomas and Kohlert, Dieter and Pernsteiner, Jochen and Schreier, Franz and Heerklotz, Sabrina and Heerklotz, Allwin and Boos, Alexander and Herwald, Dominik and Monkman, Gareth J. and Treiber, Daniel and Mayer, Matthias and H{\"o}rner, Eva and Bentz, Alexander and Shamonin (Chamonine), Mikhail and Johansen, S{\o}ren Peter and Reichel, Marco and Stoll, Andrea and Briem, Ulrich and Dullien, Silvia and Renkawitz, Tobias and Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Penzkofer, Rainer and Barnsteiner, K. and Jovanovik, M. and Wernecke, P. and V{\"o}gele, A. and Bachmann, T. and Pl{\"o}tz, Martin and Schliekmann, Claus and Wels, Harald and Helmberger, Paul and Kaspar, M. and H{\"o}nicka, M. and Schrammel, Siegfried and Enser, Markus and Schmidmeier, Monika and Schroll-Decker, Irmgard and Haug, Sonja and Gelfert, Verena and Vernim, Matthias}, title = {Forschungsbericht 2012}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7834}, pages = {64}, language = {de} } @misc{BroserFalterŁawrowskietal., author = {Broser, Christian and Falter, Thomas and Ławrowski, Robert Damian and Altenbuchner, Amelie and V{\"o}gele, Daniel and Koss, Claus and Schlampp, Matthias and Dunnweber, Jan and Steffens, Oliver and Heckner, Markus and Jaritz, Sabine and Schiegl, Thomas and Corsten, Sabine and Lauer, Norina and Guertler, Katherine and Koenig, Eric and Haug, Sonja and Huber, Dominik and Birkenmaier, Clemens and Krenkel, Lars and Wagner, Thomas and Justus, Xenia and Saßmannshausen, Sean Patrick and Kleine, Nadine and Weber, Karsten and Braun, Carina N. and Giacoppo, Giuliano and Heinrich, Michael and Just, Tobias and Schreck, Thomas and Schnabl, Andreas and Gilmore, Amador T{\´e}ran and Roeslin, Samuel and Schmid, Sandra and Wellnitz, Felix and Malz, Sebastian and Maurial, Andreas and Hauser, Florian and Mottok, J{\"u}rgen and Klettke, Meike and Scherzinger, Stefanie and St{\"o}rl, Uta and Heckner, Markus and Bazo, Alexander and Wolff, Christian and Kopper, Andreas and Westner, Markus and Pongratz, Christian and Ehrlich, Ingo and Briem, Ulrich and Hederer, Sebastian and Wagner, Marcus and Schillinger, Moritz and G{\"o}rlach, Julien and Hierl, Stefan and Siegl, Marco and Langer, Christoph and Hausladen, Matthias and Schreiner, Rupert and Haslbeck, Matthias and Kreuzer, Reinhard and Br{\"u}ckl, Oliver and Dawoud, Belal and Rabl, Hans-Peter and Gamisch, Bernd and Schmidt, Ottfried and Heberl, Michael and G{\"a}nsbauer, Bianca and Bick, Werner and Ellermeier, Andreas and Monkman, Gareth J. and Prem, Nina and Sindersberger, Dirk and Tschurtschenthaler, Karl and Aurbach, Maximilian and Dendorfer, Sebastian and Betz, Michael A. and Szecsey, Tamara and Mauerer, Wolfgang and Murr, Florian}, title = {Forschung 2018}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-5-9}, doi = {10.35096/othr/pub-1382}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13826}, pages = {98}, subject = {Forschung}, language = {de} } @inproceedings{DendorferEnglert, author = {Dendorfer, Sebastian and Englert, Carsten}, title = {Forces on a clavicles midshaft fracture and influence of fracture type}, series = {AO Symposium, Regensburg, 2009}, booktitle = {AO Symposium, Regensburg, 2009}, language = {en} } @inproceedings{AlMunajjedNolteRasmussenetal., author = {Al-Munajjed, Amir Andreas and Nolte, Daniel and Rasmussen, John and Dendorfer, Sebastian}, title = {Force distribution in the foot during braking - a musculoskeletal approach}, series = {Human Modeling Symposium 2014, Munich, Germany}, booktitle = {Human Modeling Symposium 2014, Munich, Germany}, abstract = {High loads can appear in the individual joints of the human foot while the driver uses the pedals, in particular, during breaking. Measuring these internal forces is very difficult or almost impossible; therefore, advanced models are necessary to perform musculoskeletal simulations. The objective of this investigation was to see what loads are acting in the individual foot joints from the phalanges to calcaneus and talus during different brake scenarios. The Glasgow-Maastricht AnyBody Foot Model with 26 separate segments, connected by joints, ligaments and muscles was used inside the AnyBody Modeling System to compute individual mid foot joint loads. The amount, the direction of the force and additionally also the load insertion point was varied for several simulations. Figure 1: Seated musculoskeletal body model with applied brake force and forces for the lateral, intermediate and medial cuneiform-navicular joint for two different brake forces. The simulation showed that for the different brake scenarios, different muscles will be activated in the human and therefore different loads are apply in the fore-and mid-foot, respectively. The torso of the subject was assumed to be fixed in the seat. Further studies are ongoing to simulate the seat as an elastic element that allows different H-point locations according to the different loadings in the foot from the brake pedal using a new inverse dynamics analysis method called force-dependent kinematics.}, language = {en} } @inproceedings{JungtaeublSchmitzGrossetal., author = {Jungt{\"a}ubl, Dominik and Schmitz, Paul and Gross, Simon and Dendorfer, Sebastian}, title = {FEA of the transiliacal internal fixator as an osteosynthesis of pelvic ring fractures}, series = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017}, booktitle = {CMBEBIH 2017, Proceedings of the International Conference on Medical and Biological Engineering 2017}, editor = {Badnjevic, Almir}, publisher = {Springer}, address = {Singapore}, isbn = {978-981-10-4165-5}, doi = {10.1007/978-981-10-4166-2_32}, pages = {212 -- 217}, abstract = {Common Schanz screw systems can be used to stabilize pelvic ring fractures. In order to accommodate for different patient's requirements, implants can be placed in cranio-caudal direction into the os ilium (T1), or into the supraacetabular bone canal, and thus, in dorso-ventral direction (T2). Whereas both techniques are currently used, no data of the biomechanical behavior is available up to this date. The aim of this study is to analyze, whether T2 shows biomechanical advantages with respect to tissue and implant stresses due to the enlarged bone-implant interface. Forces acting on the pelvis were analyzed using motion capture data of a gait cycle obtained by the utilization of a musculoskeletal simulation program. A three dimensional finite element (FE) model of the pelvis with grayscale-based material properties was generated. The muscle and joint reaction forces at toe-off were applied to the FE model and instable pelvis fractures were implemented. The osteosynthesis systems were positioned within the model in order to enable the comparison between the two different surgical techniques. Stresses and displacements were analyzed for bone tissue, fracture zone and implant. T2 lead to approx. 30\% larger displacements in the fracture zone. Von-Mises stresses were larger for T2 in the implant (80 MPa vs. 227 MPa), whereas T1 leads to larger stresses in the bone tissue (200 MPa vs. 140 MPa). Both implantation techniques showed a good biomechanical behavior. Differences could be found with respect to tissue strains and deformations in the fracture zone. If bone quality or fracture healing are of concern, T2 or T1 should be used, respectively. However, both techniques seem to be applicable for cases with no special requirements. Further analyses aim to investigate the behavior under cyclic loading.}, subject = {Beckenbruch}, language = {en} } @article{DendorferMaierHammer, author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Hammer, Josef}, title = {Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale}, series = {Journal of the Mechanical Behavior of Biomedical Materials}, volume = {2}, journal = {Journal of the Mechanical Behavior of Biomedical Materials}, number = {1}, doi = {10.1016/j.jmbbm.2008.03.003}, pages = {113 -- 119}, abstract = {Repeated loadings may cause fatigue fractures in bony structures. Even if these failure types are known, data for trabecular bone exposed to cyclic loading are still insufficient as the majority of fatigue analyses on bone concentrate on cortical structures. Despite its highly anisotropic and inhomogeneous structure, trabecular bone is treated with continuum approaches in fatigue analyses. The underlying deformation and damage mechanism within trabecular specimens are not yet sufficiently investigated. In the present study different types of trabecular bone were loaded in monotonic and cyclic compression. In addition to the measurement of integral specimen deformations, optical deformation analysis was employed in order to obtain strain distributions at different scale levels, from the specimens' surface to the trabeculae level. These measurements allowed for the possibility of linking the macroscopic and microscopic mechanical behaviour of cancellous bone. Deformations were found to be highly inhomogeneous across the specimen. Furthermore strains were found to already localise at very low load levels and after few load cycles. Microcracks in individual trabeculae were induced in the very early stage of cyclic testing. The results provide evidence of the capability of the method to supply essential data on the failure behaviour of individual trabeculae in future studies.}, subject = {Knochen}, language = {en} } @inproceedings{DendorferPenzkofer, author = {Dendorfer, Sebastian and Penzkofer, Rainer}, title = {Experimentelle Untersuchung der Belastungen im Kopf beim Treten}, series = {Fachsymposium "Treten gegen den Kopf", April 2013, N{\"u}rnberg}, booktitle = {Fachsymposium "Treten gegen den Kopf", April 2013, N{\"u}rnberg}, language = {de} } @inproceedings{PillingSuessKubowitschetal., author = {Pilling, A. and S{\"u}ß, Franz and Kubowitsch, Simone and Dendorfer, Sebastian}, title = {Experimental workflow for determining psychological stress from physiological biosignals}, series = {Jahrestagung der BIOMEDIZINISCHEN TECHNIK und Dreil{\"a}ndertagung der MEDIZINISCHEN PHYSIK, Dresden, Germany, 2017}, booktitle = {Jahrestagung der BIOMEDIZINISCHEN TECHNIK und Dreil{\"a}ndertagung der MEDIZINISCHEN PHYSIK, Dresden, Germany, 2017}, language = {en} }