@article{WeberSuessJerabeketal., author = {Weber, Markus and Suess, Franz and Jerabek, Seth and Meyer, Matthias and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty}, series = {Journal of Orthopaedic Research}, volume = {40}, journal = {Journal of Orthopaedic Research}, number = {4}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25106}, pages = {846 -- 853}, abstract = {Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7\% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of -1.9 ± 2.2° (p < .001) for cup inclination and -15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from -4.4 to 4.6° for inclination and from -7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{MelznerSuessDendorfer, author = {Melzner, Maximilian and Suess, Franz and Dendorfer, Sebastian}, title = {The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model - a sensitivity study}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {25}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {2}, publisher = {Taylor \& Francis}, issn = {1476-8259}, doi = {10.1080/10255842.2021.1940974}, pages = {156 -- 164}, abstract = {Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60\% of simulations are located within a ± 30\% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action.}, subject = {Biomechanik}, language = {en} } @article{MelznerPfeifferSuessetal., author = {Melzner, Maximilian and Pfeiffer, Christian and Suess, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal simulation of elbow stability for common injury patterns}, series = {Journal of Orthopaedic Research}, volume = {41}, journal = {Journal of Orthopaedic Research}, number = {6}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54819}, pages = {1356 -- 1364}, abstract = {Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding non-operative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability.}, language = {en} } @article{MelznerEngelhardtSimonetal., author = {Melzner, Maximilian and Engelhardt, Lucas and Simon, Ulrich and Dendorfer, Sebastian}, title = {Electromyography-Based Validation of a Musculoskeletal Hand Model}, series = {Journal of Biomechanical Engineering}, volume = {144}, journal = {Journal of Biomechanical Engineering}, number = {2}, publisher = {American Society of Mechanical Engineers, ASME}, doi = {10.1115/1.4052115}, pages = {8}, abstract = {Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.}, subject = {Elektromyographie}, language = {en} } @article{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophie and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing}, series = {Technology and Health Care}, volume = {30}, journal = {Technology and Health Care}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219001}, pages = {177 -- 186}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, subject = {Biomechanische Analyse}, language = {en} } @article{FoerstlSuessEnglertetal., author = {F{\"o}rstl, Nikolas and S{\"u}ß, Franz and Englert, Carsten and Dendorfer, Sebastian}, title = {Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning}, series = {Medical Engineering \& Physics}, volume = {121}, journal = {Medical Engineering \& Physics}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.medengphy.2023.104059}, pages = {22}, abstract = {To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments.}, language = {en} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @article{AuerSuessDendorfer, author = {Auer, Simon and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Using markerless motion capture and musculoskeletal models: An evaluation of joint kinematics}, series = {Technology and Health Care}, journal = {Technology and Health Care}, publisher = {IOS Press}, issn = {0928-7329}, doi = {10.3233/THC-240202}, pages = {1 -- 10}, abstract = {BACKGROUND: This study presents a comprehensive comparison between a marker-based motion capture system (MMC) and a video-based motion capture system (VMC) in the context of kinematic analysis using musculoskeletal models. OBJECTIVE: Focusing on joint angles, the study aimed to evaluate the accuracy of VMC as a viable alternative for biomechanical research. METHODS: Eighteen healthy subjects performed isolated movements with 17 joint degrees of freedom, and their kinematic data were collected using both an MMC and a VMC setup. The kinematic data were entered into the AnyBody Modelling System, which enables the calculation of joint angles. The mean absolute error (MAE) was calculated to quantify the deviations between the two systems. RESULTS: The results showed good agreement between VMC and MMC at several joint angles. In particular, the shoulder, hip and knee joints showed small deviations in kinematics with MAE values of 4.8∘, 6.8∘ and 3.5∘, respectively. However, the study revealed problems in tracking hand and elbow movements, resulting in higher MAE values of 13.7∘ and 27.7∘. Deviations were also higher for head and thoracic movements. CONCLUSION: Overall, VMC showed promising results for lower body and shoulder kinematics. However, the tracking of the wrist and pelvis still needs to be refined. The research results provide a basis for further investigations that promote the fusion of VMC and musculoskeletal models.}, language = {en} } @article{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {12}, publisher = {MDPI}, doi = {10.3390/s24124001}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @article{MuehlingSandriesserDendorferetal., author = {M{\"u}hling, Mischa and Sandriesser, Sabrina and Dendorfer, Sebastian and Augat, Peter}, title = {Assessment of implant internal stresses under physiological femoral loading: Translation to a simplified bending load model}, series = {Journal of Biomechanics}, journal = {Journal of Biomechanics}, number = {112229}, publisher = {Elsevier}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2024.112229}, pages = {17}, abstract = {The success of surgical treatment for fractures hinges on various factors, notably accurate surgical indication. The process of developing and certifying a new osteosynthesis device is a lengthy and costly process that requires multiple cycles of review and validation. Current methods, however, often rely on predecessor standards rather than physiological loads in specific anatomical locations. This study aimed to determine actual loads experienced by an osteosynthesis plate, exemplified by a standard locking plate for the femoral shaft, utilizing finite elements analysis (FEA) and to obtain the bending moments for implant development standard tests. A protocol was developed, involving the creation and validation of a fractured femur model fixed with a locking plate, mechanical testing, and FEA. The model's validation demonstrated exceptional accuracy in predicting deformations, and the FEA revealed peak stresses in the fracture bridging zone. Results of a parametric analysis indicate that larger fracture gaps significantly impact implant mechanical behavior, potentially compromising stability. This study underscores the critical need for realistic physiological conditions in implant evaluations, providing an innovative translational approach to identify internal loads and optimize implant designs. In conclusion, this research contributes to enhancing the understanding of implant performance under physiological conditions, promoting improved designs and evaluations in fracture treatments.}, language = {en} }