@article{LenichBachmeierDendorferetal., author = {Lenich, Andreas and Bachmeier, S. and Dendorfer, Sebastian and Mayr, E. and Nerlich, Michael and F{\"u}chtmeier, Bernd}, title = {Development of a test system to analyze different hip fracture osteosyntheses under simulated walking}, series = {Biomedizinische Technik. Biomedical engineering}, volume = {57}, journal = {Biomedizinische Technik. Biomedical engineering}, number = {2}, doi = {10.1515/bmt-2011-0999}, pages = {113 -- 119}, abstract = {The mechanical complications of osteosyntheses after hip fractures are previously investigated by mostly static or dynamic uniaxial loading test systems. However, the physiologic loading of the hip joint during a normal gait is a multiplanar, dynamic movement. Therefore, we constructed a system to test osteosyntheses for hip fractures under physiologic multiplanar loading representative of normal gait. To evaluate the testing system, 12 femora pairs were tested under 25,000 cycles with two standard osteosyntheses (Proximal Femoral Nail Antirotation/Gamma3 Nail). For angular movement, the varus collapse to cut out (∝CO) (∝CO=4.8°±2.1° for blade and ∝CO=7.8°±3.8° for screw) was the dominant failure mode, and only slight rotational angle shifts (∝Rot) (∝Rot=1.7°±0.4° for blade and ∝Rot=2.4°±0.3° for screw) of the femoral head around the implant axis were observed. Angular displacements in varus direction and rotation were higher in specimens reinforced with screws. Hence, the cut out model and the migration directions showed a distinction between helical blade and hip screw. However, there were no significant differences between the different implants. The new setup is able to create clinical failures and allows to give evidence about the anchorage stability of different implant types under dynamic gait motion pattern.}, subject = {H{\"u}ftgelenk}, language = {en} } @article{WeberDendorferGrifkaetal., author = {Weber, Tim A. and Dendorfer, Sebastian and Grifka, Joachim and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias}, title = {Does Computer-Assisted Femur First THR Improve Musculoskeletal Loading Conditions?}, series = {BioMed Research International}, volume = {2015}, journal = {BioMed Research International}, editor = {Takagi, Michiaki}, doi = {10.1155/2015/625317}, pages = {ID 625317}, abstract = {We have developed a novel, computer-assisted operation method for minimal-invasive total hip replacement (THR) following the concept of "femur first/combined anteversion," which incorporates various aspects of performing a functional optimization of the prosthetic stem and cup position (CAS FF). The purpose of this study is to assess whether the hip joint reaction forces and patient's gait parameters are being improved by CAS FF in relation to conventional THR (CON). We enrolled 60 patients (28 CAS FF/32 CON) and invited them for gait analysis at three time points (preoperatively, postop six months, and postop 12 months). Data retrieved from gait analysis was processed using patient-specific musculoskeletal models. The target parameters were hip reaction force magnitude (hrf), symmetries, and orientation with respect to the cup. Hrf in the CAS FF group were closer to a young healthy normal. Phase-shift symmetry showed an increase in the CAS FF group. Hrf orientation in the CAS FF group was closer to optimum, though no edge or rim-loading occurred in the CON group as well. The CAS FF group showed an improved hrf orientation in an early stage and a trend to an improved long-term outcome.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{PfeiferMuellerPrantletal., author = {Pfeifer, Christian and M{\"u}ller, Michael and Prantl, Lukas and Berner, Arne and Dendorfer, Sebastian and Englert, Carsten}, title = {Cartilage labelling for mechanical testing in T-peel configuration}, series = {International Orthopaedics}, volume = {36}, journal = {International Orthopaedics}, number = {7}, publisher = {Springer}, doi = {10.1007/s00264-011-1468-3}, pages = {1493 -- 1499}, abstract = {PURPOSE: The purpose of this study was to find a suitable method of labelling cartilage samples for the measurement of distraction distances in biomechanical testing. METHODS: Samples of bovine cartilage were labelled using five different methods: hydroquinone and silver nitrate (AgNO3), potassium permanganate (KMnO4) with sodium thiosulphate (Na2S2O3), India ink, heat, and laser energy. After the labelling, we analysed the cartilage samples with regard to cytotoxity by histochemical staining with ethidiumbromide homodimer (EthD-1) and calcein AM. Furthermore, we tested cartilages labelled with India ink and heat in a T-peel test configuration to analyse possible changes in the mechanical behaviour between marked and unlabelled samples. RESULTS: Only the labelling methods with Indian ink or a heated needle showed acceptable results in the cytotoxity test with regard to labelling persistence, accuracy, and the influence on consistency and viability of the chondrocytes. In the biomechanical T-peel configuration, heat-labelled samples collapsed significantly earlier than unlabelled samples. CONCLUSION: Labelling bovine cartilage samples with Indian ink in biomechanical testing is a reliable, accurate, inexpensive, and easy-to-perform method. This labelling method influenced neither the biomechanical behaviour nor the viability of the tissue compared to untreated bovine cartilage.}, subject = {Knorpel}, language = {en} } @article{WongRasmussenSimonsenetal., author = {Wong, Christian and Rasmussen, John and Simonsen, Erik B. and Hansen, Lone and de Zee, Mark and Dendorfer, Sebastian}, title = {The Influence of Muscle Forces on the Stress Distribution in the Lumbar Spine}, series = {The Open Spine Journal}, volume = {3}, journal = {The Open Spine Journal}, number = {1}, doi = {10.2174/1876532701103010021}, pages = {21 -- 26}, abstract = {Introduction: Previous studies of bone stresses in the human lumbar spine have relied on simplified models when modeling the spinal musculature, even though muscle forces are likely major contributors to the stresses in the vertebral bones. Detailed musculoskeletal spine models have recently become available and show good correlation with experimental findings. A combined inverse dynamics and finite element analysis study was conducted in the lumbar spine to investigate the effects of muscle forces on a detailed musculoskeletal finite element model of the 4th lumbar vertebral body. Materials and Methodology: The muscle forces were computed with a detailed and validated inverse dynamics musculoskeletal spine model in a lifting situation, and were then applied to an orthotropic finite element model of the 4th lumbar vertebra. The results were compared with those from a simplified load case without muscles. Results: In general the von Mises stress was larger by 30\%, and even higher when looking at the von Mises stress distribution in the superio-anterior and central part of the vertebral body and in the pedicles. Conclusion: The application of spine muscles to a finite element model showed markedly larger von Mises stress responses in the central and anterior part of the vertebral body, which can be tolerated in the young and healthy spine, but it would increase the risk of compression fractures in the elderly, osteoporotic spine.}, subject = {Lendenwirbels{\"a}ule}, language = {en} } @article{RoldanMoralisDendorferetal., author = {Rold{\´a}n, J.C. and Moralis, A. and Dendorfer, Sebastian and Witte, J. and Reicheneder, C.}, title = {Controlled central advancement of the midface after Le Fort III osteotomy by a 3-point skeletal anchorage}, series = {The Journal of craniofacial surgery}, volume = {22}, journal = {The Journal of craniofacial surgery}, number = {6}, doi = {10.1097/SCS.0b013e318231fc8d}, pages = {2384 -- 2386}, abstract = {A 3-point skeletal anchorage with taping screws for distraction osteogenesis after a Le Fort III osteotomy was applied for the first time in a severely mentally impaired patient where intraoral devices had to be avoided. All 3-force application points included the center of resistance, which allowed an optimal control on the resulting moment. A novel device for skeletal long-term retention into the nasal dorsum prevented a relapse, whereas adjustment of the midface position was observed. Fusioned three-dimensional computed tomography analysis revealed real movements not accessible by a conventional cephalometry.}, subject = {Mund-Kiefer-Gesichts-Chirurgie}, language = {en} } @incollection{DendorferMaierHammer, author = {Dendorfer, Sebastian and Maier, Hans J{\"u}rgen and Hammer, Josef}, title = {How do age and anisotropy affect the fatigue behaviour of cancellous bone?}, series = {Medicine Meets Engineering}, booktitle = {Medicine Meets Engineering}, publisher = {IOS Press}, pages = {68 -- 74}, abstract = {The fatigue behaviour of materials is of particular interest for the failure prediction of materials and structures exposed to cyclic loading. For trabecular bone structures only a few sets of lifetime data have been reported in the literature and structural measures are commonly not considered. The influence of load contributions not aligned with the main physiological axis remains unclear. Furthermore age effects on the fatigue behaviour are not well described. In the present study, different groups of human vertebral cancellous bone were exposed to cyclic compression. The inital modulus and therefore lifetimes were found to be highly dependent on age. The decrease in both with increasing age was much more pronounced in specimens which were not aligned with the main physiological axis. This implies that old bone is much more sensitive to (cyclic) failure loads in general but particularly to loads which are not coincident with the physiological main axis.}, subject = {Knochenbruch}, language = {en} } @misc{AuerReinkerSuessetal., author = {Auer, Simon and Reinker, Lukas and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Comparing calculated and measured muscle activity of thigh muscles in dynamic motion.}, series = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, journal = {27th Congress of the European Society of Biomechanics, 26 - 29 June 2022, Porto, Portugal}, pages = {640}, language = {en} } @article{ReinkerBlaesingBierletal., author = {Reinker, Lukas and Bl{\"a}sing, Dominic and Bierl, Rudolf and Ulbricht, Sabina and Dendorfer, Sebastian}, title = {Correlation of Acceleration Curves in Gravitational Direction for Different Body Segments during High-Impact Jumping Exercises}, series = {sensors}, volume = {23}, journal = {sensors}, number = {4}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/s23042276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-58217}, abstract = {Osteoporosis is a common disease of old age. However, in many cases, it can be very well prevented and counteracted with physical activity, especially high-impact exercises. Wearables have the potential to provide data that can help with continuous monitoring of patients during therapy phases or preventive exercise programs in everyday life. This study aimed to determine the accuracy and reliability of measured acceleration data at different body positions compared to accelerations at the pelvis during different jumping exercises. Accelerations at the hips have been investigated in previous studies with regard to osteoporosis prevention. Data were collected using an IMU-based motion capture system (Xsens) consisting of 17 sensors. Forty-nine subjects were included in this study. The analysis shows the correlation between impacts and the corresponding drop height, which are dependent on the respective exercise. Very high correlations (0.83-0.94) were found between accelerations at the pelvis and the other measured segments at the upper body. The foot sensors provided very weak correlations (0.20-0.27). Accelerations measured at the pelvis during jumping exercises can be tracked very well on the upper body and upper extremities, including locations where smart devices are typically worn, which gives possibilities for remote and continuous monitoring of programs.}, language = {en} } @article{MoragKieningerEissnertetal., author = {Morag, Sarah and Kieninger, Martin and Eissnert, Christoph and Auer, Simon and Dendorfer, Sebastian and Popp, Daniel and Hoffmann, Johannes and Kieninger, B{\"a}rbel}, title = {Comparison of different techniques for prehospital cervical spine immobilization: Biomechanical measurements with a wireless motion capture system}, series = {PLOS ONE}, volume = {18}, journal = {PLOS ONE}, number = {11}, publisher = {PLOS}, address = {San Francisco, California}, doi = {10.1371/journal.pone.0292300}, pages = {1 -- 14}, language = {en} } @article{ReinkerDendorfer, author = {Reinker, Lukas and Dendorfer, Sebastian}, title = {Evaluation of acceleration patterns during high-impact jumping exercises}, series = {Gait \& Posture}, volume = {100}, journal = {Gait \& Posture}, number = {Supplement 1, March}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, doi = {10.1016/j.gaitpost.2022.11.051}, pages = {93 -- 94}, language = {en} } @article{MelznerIsmailRušavyetal., author = {Melzner, Maximilian and Ismail, Khaled and Rušavy, Zdenek and Kališ, Vladim{\´i}r and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal lower back load of accoucheurs during childbirth - A pilot and feasibility study}, series = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, journal = {European Journal of Obstetrics \& Gynecology and Reproductive Biology}, number = {264}, publisher = {Elsevier}, doi = {10.1016/j.ejogrb.2021.07.042}, pages = {306 -- 313}, abstract = {Introduction: Back problems represent one of the leading causes of accouchers' work-related musculoskeletal morbidities. The correct execution of birth-related maneuvers including manual perineal protection is crucial not only for the mother and child but also for obstetricians and midwives to reduce any strain on their musculoskeletal system. Therefore, the overall aim of this study was to test the feasibility of determining the effect of different accouchers' postures (standing and kneeling) on their musculoskeletal system. Methods: The biomechanical analysis is based on musculoskeletal simulations that included motion recordings of real deliveries as well as deliveries conducted on a birthing simulator. These simulations were then used to determine individual joints' loads. Results: In the kneeling posture, both a low intra-operator variability and a lower average maximum load of the lower back was observed. For the standing position the spine load was reduced by pivoting the elbow on the accouchers' thigh, which in turn was associated with a significantly greater load on the shoulder joint. Conclusion: The study demonstrated the feasibility of our technique to assess joints loads. It also provided initial data indicating that a posture that reduces spinal flexion and tilt, achieved in this study by the kneeling, can significantly reduce the strain on the practitioner's musculoskeletal system.}, language = {en} } @article{EngelhardtMelznerHavelkovaetal., author = {Engelhardt, Lucas and Melzner, Maximilian and Havelkova, Linda and Fiala, Pavel and Christen, Patrik and Dendorfer, Sebastian and Simon, Ulrich}, title = {A new musculoskeletal AnyBodyTM detailed hand model}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {24}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {7}, publisher = {Taylor \& Francis}, doi = {10.1080/10255842.2020.1851367}, pages = {777 -- 787}, abstract = {Musculoskeletal research questions regarding the prevention or rehabilitation of the hand can be addressed using inverse dynamics simulations when experiments are not possible. To date, no complete human hand model implemented in a holistic human body model has been fully developed. The aim of this work was to develop, implement, and validate a fully detailed hand model using the AnyBody Modelling System (AMS) (AnyBody, Aalborg, Denmark). To achieve this, a consistent multiple cadaver dataset, including all extrinsic and intrinsic muscles, served as a basis. Various obstacle methods were implemented to obtain with the correct alignment of the muscle paths together with the full range of motion of the fingers. These included tori, cylinders, and spherical ellipsoids. The origin points of the lumbrical muscles within the tendon of the flexor digitorum profundus added a unique feature to the model. Furthermore, the possibility of an entire patient-specific scaling based on the hand length and width were implemented in the model. For model validation, experimental datasets from the literature were used, which included the comparison of numerically calculated moment arms of the wrist, thumb, and index finger muscles. In general, the results displayed good comparability of the model and experimental data. However, the extrinsic muscles showed higher accordance than the intrinsic ones. Nevertheless, the results showed, that the proposed developed inverse dynamics hand model offers opportunities in a broad field of applications, where the muscles and joint forces of the forearm play a crucial role.}, language = {en} } @misc{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophia and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical Analysis of the Right Elevated Glenohumeral Joint in Violinists during Legato-Playing}, series = {Biomdlore 2021: 21-23 October 2021 Vilnius/Trakai, Lithuania}, journal = {Biomdlore 2021: 21-23 October 2021 Vilnius/Trakai, Lithuania}, doi = {10.3233/THC-219001}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, language = {en} } @article{AuerSchieblIversenetal., author = {Auer, Simon and Schiebl, Jonas and Iversen, Kristoffer and Subhash Chander, Divyaksh and Damsgaard, Michael and Dendorfer, Sebastian}, title = {Biomechanical assessment of the design and efficiency of occupational exoskeletons with the AnyBody Modeling System}, series = {Zeitschrift f{\"u}r Arbeitswissenschaften}, volume = {76}, journal = {Zeitschrift f{\"u}r Arbeitswissenschaften}, number = {4}, publisher = {Springer Nature}, doi = {10.1007/s41449-022-00336-4}, pages = {440 -- 449}, abstract = {Exoskeletons were invented over 100 years ago but have only become popular in the last two decades, especially in the working industry as they can decrease work-related loads significantly. The most often used exoskeletons are for the lower back and shoulder since these are commonly affected body regions. All devices have in common that their purpose is to reduce internal loads of vulnerable body regions. Nevertheless, there is still little understanding on how biomechanical loading in the human body changes when exoskeletons are used. Therefore, further analyses are needed. A promising candidate for these are musculoskeletal models, which are based on an inverse dynamics approach and can calculate external parameters such as ground reaction forces or other interaction forces as well as internal parameters such as joint reaction forces or muscle activities. The various examples in the literature show that these models are increasingly used for assessing the biomechanical effects of exoskeletons on the human body. Furthermore, musculoskeletal models can calculate biomechanical loadings of humans with and without exoskeletons for all kinds of applications and allow an evaluation of their purpose. Practical Relevance: This article highlights the possibilities of musculoskeletal models for assessing the design and efficiency of occupational exoskeletons. Several practical use cases are described along with distinct descriptions of common implications of musculoskeletal and exoskeleton modeling.}, language = {en} } @article{WeberSuessJerabeketal., author = {Weber, Markus and Suess, Franz and Jerabek, Seth and Meyer, Matthias and Grifka, Joachim and Renkawitz, Tobias and Dendorfer, Sebastian}, title = {Kinematic pelvic tilt during gait alters functional cup position in total hip arthroplasty}, series = {Journal of Orthopaedic Research}, volume = {40}, journal = {Journal of Orthopaedic Research}, number = {4}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25106}, pages = {846 -- 853}, abstract = {Static pelvic tilt impacts functional cup position in total hip arthroplasty (THA). In the current study we investigated the effect of kinematic pelvic changes on cup position. In the course of a prospective controlled trial postoperative 3D-computed tomography (CT) and gait analysis before and 6 and 12 months after THA were obtained in 60 patients. Kinematic pelvic motion during gait was measured using Anybody Modeling System. By fusion with 3D-CT, the impact of kinematic pelvic tilt alterations on cup anteversion and inclination was calculated. Furthermore, risk factors correlating with high pelvic mobility were evaluated. During gait a high pelvic range of motion up to 15.6° exceeding 5° in 61.7\% (37/60) of patients before THA was found. After surgery, the pelvis tilted posteriorly by a mean of 4.0 ± 6.6° (p < .001). The pelvic anteflexion led to a mean decrease of -1.9 ± 2.2° (p < .001) for cup inclination and -15.1 ± 6.1° (p < .001) for anteversion in relation to the anterior pelvic plane (APP). Kinematic pelvic changes resulted in a further change up to 2.3° for inclination and up to 12.3° for anteversion. In relation to the preoperative situation differences in postoperative cup position ranged from -4.4 to 4.6° for inclination and from -7.8 to 17.9° for anteversion, respectively. Female sex (p < .001) and normal body weight (p < .001) correlated with high alterations in pelvic tilt. Kinematic pelvic changes highly impact cup anteversion in THA. Surgeons using the APP as reference should aim for a higher anteversion of about 15° due to the functional anteflexion of the pelvis during gait.}, subject = {H{\"u}ftgelenkprothese}, language = {en} } @article{MelznerSuessDendorfer, author = {Melzner, Maximilian and Suess, Franz and Dendorfer, Sebastian}, title = {The impact of anatomical uncertainties on the predictions of a musculoskeletal hand model - a sensitivity study}, series = {Computer Methods in Biomechanics and Biomedical Engineering}, volume = {25}, journal = {Computer Methods in Biomechanics and Biomedical Engineering}, number = {2}, publisher = {Taylor \& Francis}, issn = {1476-8259}, doi = {10.1080/10255842.2021.1940974}, pages = {156 -- 164}, abstract = {Outputs of musculoskeletal models should be considered probabilistic rather than deterministic as they are affected by inaccuracies and estimations associated with the development of the model. One of these uncertainties being critical for modeling arises from the determination of the muscles' line of action and the physiological cross-sectional area. Therefore, the aim of this study was to evaluate the outcome sensitivity of model predictions from a musculoskeletal hand model in comparison to the uncertainty of these input parameters. For this purpose, the kinematics and muscle activities of different hand movements (abduction of the fingers, abduction of the thumb, and flexion of the thumb) were recorded. One thousand simulations were calculated for each movement using the Latin hypercube sampling method with a corresponding variation of the muscle origin/insertion points and the cross-sectional area. Comparing the standard hand to simulations incorporating uncertainties of input parameters shows no major deviations in on- and off-set time point of muscle activities. About 60\% of simulations are located within a ± 30\% interval around the standard model concerning joint reaction forces. The comparison with the variation of the input data leads to the conclusion that the standard hand model is able to provide not over-scattered outcomes and, therefore, can be considered relatively stable. These results are of practical importance to the personalization of a musculoskeletal model with subject-specific bone geometries and hence changed muscle line of action.}, subject = {Biomechanik}, language = {en} } @article{MelznerPfeifferSuessetal., author = {Melzner, Maximilian and Pfeiffer, Christian and Suess, Franz and Dendorfer, Sebastian}, title = {Musculoskeletal simulation of elbow stability for common injury patterns}, series = {Journal of Orthopaedic Research}, volume = {41}, journal = {Journal of Orthopaedic Research}, number = {6}, publisher = {Wiley}, issn = {1554-527X}, doi = {10.1002/jor.25460}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54819}, pages = {1356 -- 1364}, abstract = {Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding non-operative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability.}, language = {en} } @article{MelznerEngelhardtSimonetal., author = {Melzner, Maximilian and Engelhardt, Lucas and Simon, Ulrich and Dendorfer, Sebastian}, title = {Electromyography-Based Validation of a Musculoskeletal Hand Model}, series = {Journal of Biomechanical Engineering}, volume = {144}, journal = {Journal of Biomechanical Engineering}, number = {2}, publisher = {American Society of Mechanical Engineers, ASME}, doi = {10.1115/1.4052115}, pages = {8}, abstract = {Regarding the prevention of injuries and rehabilitation of the human hand, musculoskeletal simulations using an inverse dynamics approach allow for insights of the muscle recruitment and thus acting forces on the hand. Currently, several hand models from various research groups are in use, which are mainly validated by the comparison of numerical and anatomical moment arms. In contrast to this validation and model-building technique by cadaver studies, the aim of this study is to further validate a recently published hand model [1] by analyzing numerically calculated muscle activities in comparison to experimentally measured electromyographical signals of the muscles. Therefore, the electromyographical signals of 10 hand muscles of five test subjects performing seven different hand movements were measured. The kinematics of these tasks were used as input for the hand model, and the numerical muscle activities were computed. To analyze the relationship between simulated and measured activities, the time difference of the muscle on- and off-set points was calculated, which resulted in a mean on- and off-set time difference of 0.58 s between the experimental data and the model. The largest differences were detected for movements that mainly addressed the wrist. One major issue comparing simulated and measured muscle activities of the hand is cross-talk. Nevertheless, the results show that the hand model fits the experiment quite accurately despite some limitations and is a further step toward patient-specific modeling of the upper extremity.}, subject = {Elektromyographie}, language = {en} } @article{SaffertMelznerDendorfer, author = {Saffert, Anne-Sophie and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Biomechanical analysis of the right elevated glenohumeral joint in violinists during legato-playing}, series = {Technology and Health Care}, volume = {30}, journal = {Technology and Health Care}, number = {1}, publisher = {IOS Press}, doi = {10.3233/THC-219001}, pages = {177 -- 186}, abstract = {BACKGROUND: Many statistics reveal that violin players suffer most often from musculoskeletal disorders compared to musicians of other instrument groups. A common phenomenon, especially observed in violin beginners, is the tendency to elevate the right shoulder during playing the violin. This can probably lead to serious disorders in long-term practice with repetitive movements. OBJECTIVE: For this reason, this study investigated the relationship between the right shoulder elevation and the force in the right glenohumeral joint during violin playing. It was hypothesized that the forces in the right glenohumeral joint are higher during playing with the right shoulder raised compared to playing in normal posture. METHODS: Motion capture data from four experienced violinists was recorded and processed by means of musculoskeletal simulation to get the force and elevation angle while playing with raised shoulder and in normal position. RESULTS: The results indicate that the absolute values of the resulting force, as well as the forces in the mediolateral, inferosuperior, and anteroposterior directions, are higher in playing the violin with the shoulder raised than in a normal posture. CONCLUSIONS: Elevating the right shoulder while playing the violin may pose a potential problem.}, subject = {Biomechanische Analyse}, language = {en} } @article{FoerstlSuessEnglertetal., author = {F{\"o}rstl, Nikolas and S{\"u}ß, Franz and Englert, Carsten and Dendorfer, Sebastian}, title = {Design of a reverse shoulder implant to measure shoulder stiffness during implant component positioning}, series = {Medical Engineering \& Physics}, volume = {121}, journal = {Medical Engineering \& Physics}, edition = {Journal Pre-proof}, publisher = {Elsevier}, doi = {10.1016/j.medengphy.2023.104059}, pages = {22}, abstract = {To avoid dislocation of the shoulder joint after reverse total shoulder arthroplasty, it is important to achieve sufficient shoulder stability when placing the implant components during surgery. One parameter for assessing shoulder stability can be shoulder stiffness. The aim of this research was to develop a temporary reverse shoulder implant prototype that would allow intraoperative measurement of shoulder stiffness while varying the position of the implant components. Joint angle and torque measurement techniques were developed to determine shoulder stiffness. Hall sensors were used to measure the joint angles by converting the magnetic flux densities into angles. The accuracy of the joint angle measurements was tested using a test bench. Torques were determined by using thin-film pressure sensors. Various mechanical mechanisms for variable positioning of the implant components were integrated into the prototype. The results of the joint angle measurements showed measurement errors of less than 5° in a deflection range of ±15° adduction/abduction combined with ±45° flexion/extension. The proposed design provides a first approach for intra-operative assessment of shoulder stiffness. The findings can be used as a technological basis for further developments.}, language = {en} } @inproceedings{SuessMelznerDendorfer, author = {Suess, Franz and Melzner, Maximilian and Dendorfer, Sebastian}, title = {Towards ergonomics working - machine learning algorithms and musculoskeletal modeling}, series = {IOP Conference Series: Materials Science and Engineering}, volume = {1208}, booktitle = {IOP Conference Series: Materials Science and Engineering}, publisher = {IOP Publishing}, issn = {1757-899X}, doi = {10.1088/1757-899X/1208/1/012001}, abstract = {Ergonomic workplaces lead to fewer work-related musculoskeletal disorders and thus fewer sick days. There are various guidelines to help avoid harmful situations. However, these recommendations are often rather crude and often neglect the complex interaction of biomechanical loading and psychological stress. This study investigates whether machine learning algorithms can be used to predict mechanical and stress-related muscle activity for a standardized motion. For this purpose, experimental data were collected for trunk movement with and without additional psychological stress. Two different algorithms (XGBoost and TensorFlow) were used to model the experimental data. XGBoost in particular predicted the results very well. By combining it with musculoskeletal models, the method shown here can be used for workplace analysis but also for the development of real-time feedback systems in real workplace environments.}, language = {en} } @article{SchaefferHerrmannSchratzenstalleretal., author = {Schaeffer, Leon and Herrmann, David and Schratzenstaller, Thomas and Dendorfer, Sebastian and B{\"o}hm, Valter}, title = {Preliminary theoretical considerations on the stiffness characteristics of a tensegrity joint for the use in dynamic orthoses}, series = {Journal of Medical Robotics Research}, journal = {Journal of Medical Robotics Research}, publisher = {World Scientific}, doi = {10.1142/S2424905X23400081}, abstract = {Early motion therapy plays an important role for effective long-term healing of joint injuries. In many cases, conventional dynamic orthoses fail to address the intricate movement possibilities of the underlying joints, limited by their simplistic joint representations, often represented by revolute joints, enabling rotations by only one axis. In this paper, a two-dimensional compliant tensegrity joint for use in biomedical applications is investigated. It consists of two compressed members and five compliant tensioned members. Relative movement possibilities are realized by the intrinsic compliance of the structure. In the development of these systems, the first step is the determination of the static stable equilibrium. This analysis is conducted in this paper by considering the potential energy approach or by using the geometric nonlinear finite element method. The mechanical behavior of the structure is assessed with a specific emphasis on its mechanical compliance. The primary objective of this study is the investigation of the influence of structural parameters on the overall stiffness and movability of the structure. The results underscore the significant effect of member parameters on the stiffness and movability of the compliant tensegrity joint, particularly under varying load magnitudes. These findings provide insights for optimizing the joint's performance, contributing to its potential application in advanced orthotic and exoskeleton devices.}, language = {en} } @article{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {12}, publisher = {MDPI}, doi = {10.3390/s24124001}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact on their quality of life. The aim of this review was to provide a general overview of the current state of technology used to assess pelvic floor functionality. It also provides literature research of the physiological and anatomical factors that correlate with pelvic floor health. This systematic review was conducted according to the PRISMA guidelines. The PubMed, ScienceDirect, Cochrane Library, and IEEE databases were searched for publications on sensor technology for the assessment of pelvic floor functionality. Anatomical and physiological parameters were identified through a manual search. In the systematic review, 114 publications were included. Twelve different sensor technologies were identified. Information on the obtained parameters, sensor position, test activities, and subject characteristics was prepared in tabular form from each publication. A total of 16 anatomical and physiological parameters influencing pelvic floor health were identified in 17 published studies and ranked for their statistical significance. Taken together, this review could serve as a basis for the development of novel sensors which could allow for quantifiable prevention and diagnosis, as well as particularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} } @unpublished{FoerstlAdlerSuessetal., author = {F{\"o}rstl, Nikolas and Adler, Ina and S{\"u}ß, Franz and Dendorfer, Sebastian}, title = {Technologies for Evaluation of Pelvic Floor Functionality: A Systematic Review}, publisher = {Center for Open Science}, doi = {10.31219/osf.io/dcqyg}, abstract = {Pelvic floor dysfunction is a common problem in women and has a negative impact ontheir quality of life. The aim of this review was to provide a general overview of the current state oftechnology used to assess pelvic floor functionality. It also provides literature research of the phys-iological and anatomical factors that correlate with pelvic floor health. The systematic review wasconducted according to the PRISMA guidelines. PubMed, ScienceDirect, Cochrane Library andIEEE databases were searched for publications on sensor technology for the assessment of pelvicfloor functionality. Anatomical and physiological parameters were identified through a manualsearch. In the systematic review 115 publications were included. 12 different sensor technologieswere identified. Information on the obtained parameters, sensor position, test activities and subjectcharacteristics were prepared in tabular form from each publication. 16 anatomical and physiologi- cal parameters influencing pelvic floor health were identified in 17 published studies and rankedfor their statistical significance. Taken together, this review could serve as a basis for the develop-ment of novel sensors which could allow for quantifiable prevention and diagnosis, as well as par-ticularized documentation of rehabilitation processes related to pelvic floor dysfunctions.}, language = {en} }