@techreport{AndratschkeCeulloDawoudetal., author = {Andratschke, Christin and Ceullo, Laura and Dawoud, Belal and Draeger, Susan and Gerdes, Thorsten and Giebisch, Matthias and Grießhammer, Peter and Haas, Katharina and Haug, Sonja and Helling, Dominik and Kominis, Lena and Lang, Christian and Malz, Sebastian and Melzl, Johannes and Michlbauer, David and M{\"u}hlberger, Thomas and Nagl, Klaus and Preis, Michael and Rechenauer, Christian and Riederer, Michael and R{\"u}ckerl, Alexander and Saller, Tobias and Schnabl, Andreas and Stadler, Michael and Steffens, Oliver and Steininger, Peter and Stelzl, Andr{\´e} and Toutouly, Lovis and Trauner, Matthias and Vetter, Miriam and Walbrunn, Johannes and Weber, Karsten and Zielbauer, Lukas}, title = {MAGGIE: Energetische Modernisierung des genossenschaftlichen Wohnquartiers Margaretenau in Regensburg}, editor = {Steffens, Oliver}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-96256-100-0}, doi = {10.35096/othr/pub-5901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-59011}, pages = {XVIII, 462 S.}, abstract = {Im Projekt MAGGIE wurden f{\"u}r das genossenschaftliche historische Stadtquartier „Margaretenau" in Regensburg Musterl{\"o}sungen f{\"u}r energieoptimiertes Wohnen mit innovativen Wandaufbauten aus solaraktiven Baukonstruktionen und einer vorhersagebasierten Versorgungstechnologie erforscht. Dazu wurde ein bestehendes Wohngeb{\"a}ude als Demonstrations- und Versuchsobjekt mit einem neuartigen, besonders effizienten Hybridsystem aus W{\"a}rmepumpentechnologie und Kraft- W{\"a}rme-Kopplung ausgestattet und untersucht, erg{\"a}nzt durch eine dynamische W{\"a}rmelogistik zur Verringerung von Verteilungsverlusten. Das System wurde durch ein neu entwickeltes, allgemein einsetzbares Planungs-, Optimierungs- und Steuerungstool ausgelegt und im Betrieb geregelt. Die in Echtzeit laufende Nachoptimierung des Systems w{\"a}hrend des Betriebs greift dabei auf reale Monitoringdaten zu. Die Einbindung von Nutzerbedarfsprofilen, Stromb{\"o}rse und Wetterdaten in die Steuerung gestattet einen dynamischen und perspektivischen Anlagenbetrieb zur Maximierung der Solar- und Umweltw{\"a}rme-Anteile der Energieversorgung und leistet damit einen wirksamen Beitrag zu einem emissionsarmen, klimafreundlichen Geb{\"a}udebetrieb. F{\"u}r die denkmalgerechte Modernisierung der historischen Fassaden wurde ein solaraktives und solaradaptives Außenputzsystem entwickelt und in der Realit{\"a}t getestet. Am Bestandsgeb{\"a}ude kam anstelle eines W{\"a}rmed{\"a}mmverbundsystems ein innovativer D{\"a}mmputz mit Mikrohohlglaskugeln zum Einsatz. Die Skalierbarkeit erlaubt eine abschnittsweise Modernisierung des gesamten Ensembles {\"u}ber mehrere Jahre. Durch die hohe Energieeffizienz wird die Warmmiete f{\"u}r die Bewohner der genossenschaftlichen Siedlung durch die Modernisierungsmaßnahmen nicht erh{\"o}ht, so dass auch nach der Modernisierung ein bezahlbares Wohnen sichergestellt wird.}, subject = {Altbaumodernisierung}, language = {de} } @techreport{AndratschkeCeulloDawoudetal., author = {Andratschke, Christin and Ceullo, Laura and Dawoud, Belal and Draeger, Susan and Gerdes, Thorsten and Giebisch, Matthias and Grießhammer, Peter and Haas, Katharina and Haug, Sonja and Helling, Dominik and Kominis, Lena and Lang, Christian and Malz, Sebastian and Melzl, Johannes and Michlbauer, David and M{\"u}hlberger, Thomas and Nagl, Klaus and Preis, Michael and Rechenauer, Christian and Riederer, Michael and R{\"u}ckerl, Alexander and Saller, Tobias and Schnabl, Andreas and Stadler, Michael and Steffens, Oliver and Steininger, Peter and Stelzl, Andr{\´e} and Toutouly, Lovis and Trauner, Matthias and Vetter, Miriam and Walbrunn, Johannes and Weber, Karsten and Zielbauer, Lukas}, title = {MAGGIE: Energetische Modernisierung des genossenschaftlichen Wohnquartiers Margaretenau in Regensburg}, editor = {Steffens, Oliver}, address = {Regensburg}, isbn = {978-3-96256-100-0}, doi = {10.35096/othr/pub-5335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-53354}, pages = {XVIII, 462 S.}, abstract = {Im Projekt MAGGIE wurden f{\"u}r das genossenschaftliche historische Stadtquartier „Margaretenau" in Regensburg Musterl{\"o}sungen f{\"u}r energieoptimiertes Wohnen mit innovativen Wandaufbauten aus solaraktiven Baukonstruktionen und einer vorhersagebasierten Versorgungstechnologie erforscht. Dazu wurde ein bestehendes Wohngeb{\"a}ude als Demonstrations- und Versuchsobjekt mit einem neuartigen, besonders effizienten Hybridsystem aus W{\"a}rmepumpentechnologie und Kraft- W{\"a}rme-Kopplung ausgestattet und untersucht, erg{\"a}nzt durch eine dynamische W{\"a}rmelogistik zur Verringerung von Verteilungsverlusten. Das System wurde durch ein neu entwickeltes, allgemein einsetzbares Planungs-, Optimierungs- und Steuerungstool ausgelegt und im Betrieb geregelt. Die in Echtzeit laufende Nachoptimierung des Systems w{\"a}hrend des Betriebs greift dabei auf reale Monitoringdaten zu. Die Einbindung von Nutzerbedarfsprofilen, Stromb{\"o}rse und Wetterdaten in die Steuerung gestattet einen dynamischen und perspektivischen Anlagenbetrieb zur Maximierung der Solar- und Umweltw{\"a}rme-Anteile der Energieversorgung und leistet damit einen wirksamen Beitrag zu einem emissionsarmen, klimafreundlichen Geb{\"a}udebetrieb. F{\"u}r die denkmalgerechte Modernisierung der historischen Fassaden wurde ein solaraktives und solaradaptives Außenputzsystem entwickelt und in der Realit{\"a}t getestet. Am Bestandsgeb{\"a}ude kam anstelle eines W{\"a}rmed{\"a}mmverbundsystems ein innovativer D{\"a}mmputz mit Mikrohohlglaskugeln zum Einsatz. Die Skalierbarkeit erlaubt eine abschnittsweise Modernisierung des gesamten Ensembles {\"u}ber mehrere Jahre. Durch die hohe Energieeffizienz wird die Warmmiete f{\"u}r die Bewohner der genossenschaftlichen Siedlung durch die Modernisierungsmaßnahmen nicht erh{\"o}ht, so dass auch nach der Modernisierung ein bezahlbares Wohnen sichergestellt wird.}, subject = {Altbaumodernisierung}, language = {de} } @incollection{ScholzKrenkelTerekhovetal., author = {Scholz, Alexander-Wigbert K. and Krenkel, Lars and Terekhov, Maxim and Friedrich, Janet and Rivoire, Julien and K{\"o}brich, Rainer and Wolf, Ursula and Kalthoff, Daniel and David, Matthias and Wagner, Claus and Schreiber, Laura Maria}, title = {Magnetic Resonance Imaging and Computational Fluid Dynamics of High Frequency Oscillatory Ventilation (HFOV)}, series = {Fundamental Medical and Engineering Investigations on Protective Artificial Respiration}, volume = {116}, booktitle = {Fundamental Medical and Engineering Investigations on Protective Artificial Respiration}, editor = {Hirschel, Ernst Heinrich and Schr{\"o}der, Wolfgang and Fujii, Kozo and Haase, Werner and Leer, Bram and Leschziner, Michael A. and Pandolfi, Maurizio and Periaux, Jacques and Rizzi, Arthur and Roux, Bernard and Shokin, Yurii I. and Klaas, Michael and Koch, Edmund and Schr{\"o}der, Wolfgang}, publisher = {Springer}, address = {Berlin, Heidelberg}, isbn = {978-3-642-20325-1}, doi = {10.1007/978-3-642-20326-8_7}, pages = {107 -- 128}, abstract = {In order to better understand the mechanisms of gas transport during High Frequency Oscillatory Ventilation (HFOV) Magnetic Resonance Imaging (MRI) with contrast gases and numerical flow simulations based on Computational Fluid Dynamics(CFD) methods are performed. Validation of these new techniques is conducted by comparing the results obtained with simplified models of the trachea and a first lung bifurcation as well as in a cast model of the upper central airways with results achieved from conventional fluid mechanical measurement techniques like e.g. Laser Doppler Anemometry (LDA). Further it is demonstrated that MRI of experimental HFOV is feasible and that Hyperpolarized 3He allows for imaging the gas re-distribution inside the lung. Finally, numerical results of oscillatory flow in a 3rd generation model of the lung as well as the impact of endotracheal tubes on the flow regime development in a trachea model are presented.}, language = {en} } @inproceedings{CantalloubeGomezGonzalezAbsiletal., author = {Cantalloube, Faustine and Gomez-Gonzalez, Carlos and Absil, Olivier and Cantero, Carles and Bacher, Regis and Bonse, Markus and Bottom, Michael and Dahlqvist, Carl-Henrik and Desgrange, C{\´e}lia and Flasseur, Olivier and Fuhrmann, Thomas and Henning, Thomas H. and Jensen-Clem, Rebecca and Kenworthy, Matthew and Mawet, Dimitri and Mesa, Dino and Meshkat, Tiffany and Mouillet, David and M{\"u}ller, Andr{\´e} and Nasedkin, Evert and Pairet, Benoit and Pi{\´e}rard, S{\´e}bastien and Ruffio, Jean-Baptiste and Samland, Matthias and Stone, Jordan and van Droogenbroeck, Marc}, title = {Exoplanet imaging data challenge: benchmarking the various image processing methods for exoplanet detection}, series = {Adaptive Optics Systems VII : 14-22 December 2020, online only, United States}, booktitle = {Adaptive Optics Systems VII : 14-22 December 2020, online only, United States}, editor = {Schmidt, Dirk and Schreiber, Laura and Vernet, Elise}, publisher = {SPIE}, isbn = {9781510636835}, doi = {10.1117/12.2574803}, pages = {321}, abstract = {The Exoplanet Imaging Data Challenge is a community-wide effort meant to offer a platform for a fair and common comparison of image processing methods designed for exoplanet direct detection. For this purpose, it gathers on a dedicated repository (Zenodo), data from several high-contrast ground-based instruments worldwide in which we injected synthetic planetary signals. The data challenge is hosted on the CodaLab competition platform, where participants can upload their results. The specifications of the data challenge are published on our website https://exoplanet-imaging-challenge.github.io/. The first phase, launched on the 1st of September 2019 and closed on the 1st of October 2020, consisted in detecting point sources in two types of common data-set in the field of high-contrast imaging: data taken in pupil-tracking mode at one wavelength (subchallenge 1, also referred to as ADI) and multispectral data taken in pupil-tracking mode (subchallenge 2, also referred to as ADI+mSDI). In this paper, we describe the approach, organisational lessons-learnt and current limitations of the data challenge, as well as preliminary results of the participants' submissions for this first phase. In the future, we plan to provide permanent access to the standard library of data sets and metrics, in order to guide the validation and support the publications of innovative image processing algorithms dedicated to high-contrast imaging of planetary systems.}, language = {en} } @article{EbigboMendelRueckertetal., author = {Ebigbo, Alanna and Mendel, Robert and R{\"u}ckert, Tobias and Schuster, Laurin and Probst, Andreas and Manzeneder, Johannes and Prinz, Friederike and Mende, Matthias and Steinbr{\"u}ck, Ingo and Faiss, Siegbert and Rauber, David and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Deprez, Pierre and Oyama, Tsuneo and Takahashi, Akiko and Seewald, Stefan and Sharma, Prateek and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of Artificial Intelligence: A pilot Study}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {09}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/a-1311-8570}, pages = {878 -- 883}, abstract = {Background and aims: The accurate differentiation between T1a and T1b Barrett's cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an Artificial Intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer white-light images. Methods: Endoscopic images from three tertiary care centres in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross-validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) was evaluated with the AI-system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results: The sensitivity, specificity, F1 and accuracy of the AI-system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.73 and 0.71, respectively. There was no statistically significant difference between the performance of the AI-system and that of human experts with sensitivity, specificity, F1 and accuracy of 0.63, 0.78, 0.67 and 0.70 respectively. Conclusion: This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equal to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and in a real-life setting. Nevertheless, the correct prediction of submucosal invasion in Barret´s cancer remains challenging for both experts and AI.}, subject = {Maschinelles Lernen}, language = {en} }