@inproceedings{HopfenspergerDaubnerHerrmannetal., author = {Hopfensperger, Bernhard and Daubner, Andreas and Herrmann, Fabian and Hopkins, Andrew and Mellor, Phil}, title = {Investigation of Shifted PWM Methods for a Dual Three-Phase System to Reduce Capacitor RMS Current}, series = {PCIM Europe Digital Days 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management: 07.-08.07.2020, Online [proceedings]}, booktitle = {PCIM Europe Digital Days 2020: International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management: 07.-08.07.2020, Online [proceedings]}, publisher = {VDE-Verlag}, address = {Berlin, Offenbach}, isbn = {978-3-8007-5245-4}, pages = {124 -- 131}, abstract = {Mild hybrid automotive topologies containing a 48V high power (>15 kW) electric drive system demand a high integration of power electronics and electrical machine. A multi-phase motor winding topology helps to keep the per-phase operating currents to a reasonable level. Close integration and multi-phase system have led to a drive system with dual 3-phase systems supplied by a common 48V DC-link, which allows to shift PWM patterns for reduction of DC-link capacitor ripple current and size. This paper derives some basic rules for combinations of common PWM methods for dual 3-phase systems without magnetic cross-coupling. Experimental measurements verify simulated results.}, subject = {Elektroantrieb}, language = {en} }