@misc{BeimlerLeisslEbneretal., author = {Beimler, Josef and Leißl, Caroline and Ebner, Lena and Elsner, Michael and M{\"u}hlbauer, Gerhard and Kohlert, Dieter and Schubert, Martin J. W. and Weiß, Andreas P. and Sterner, Michael and Raith, Thomas and Afranseder, Martin and Krapf, Tobias and Mottok, J{\"u}rgen and Siemers, Christian and Großmann, Benjamin and H{\"o}cherl, Johannes and Schlegl, Thomas and Schneider, Ralph and Milaev, Johannes and Rampelt, Christina and Roduner, Christian and Glowa, Christoph and Bachl, Christoph and Schliekmann, Claus and Gnan, Alfons and Grill, Martin and Ruhland, Karl and Piehler, Thomas and Friers, Daniel and Wels, Harald and Pflug, Kenny and Kucera, Markus and Waas, Thomas and Schlachetzki, Felix and Boy, Sandra and Pemmerl, Josef and Leis, Alexander and Welsch, Andreas F.X. and Graf, Franz and Zenger, Gerhard and Volbert, Klaus and Waas, Thomas and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Heyl, C. and Boldenko, A. and Monkman, Gareth J. and Kujat, Richard and Briem, Ulrich and Hierl, Stefan and Talbot, Sebastian and Schmailzl, Anton and Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert and Valentino, Piergiorgio and Romano, Marco and Ehrlich, Ingo and Furgiuele, Franco and Gebbeken, Norbert and Eisenried, Michael and Jungbauer, Bastian and Hutterer, Albert and Bauhuber, Michael and Mikrievskij, Andreas and Argauer, Monika and Hummel, Helmut and Lechner, Alfred and Liebetruth, Thomas and Schumm, Michael and Joseph, Saskia and Reschke, Michael and Soska, Alexander and Schroll-Decker, Irmgard and Putzer, Michael and Rasmussen, John and Dendorfer, Sebastian and Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias and Haug, Sonja and Rudolph, Clarissa and Zeitler, Annika and Schaubeck, Simon and Steffens, Oliver and Rechenauer, Christian and Schulz-Brize, Thekla and Fleischmann, Florian and Kusterle, Wolfgang and Beer, Anne and Wagner, Bernd and Neidhart, Thomas}, title = {Forschungsbericht 2013}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7990}, pages = {80}, language = {de} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} } @article{BachmannDuesbergLangeretal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Herdl, Florian and Bergbreiter, Lukas and Dams, Florian and Miyakawa, Natuski and Eggert, Tobias and Pahlke, Andreas and Edler, Simon and Prommesberger, Christian and Ławrowski, Robert Damian and Hausladen, Matthias and Schreiner, Rupert}, title = {Vacuum-sealed field emission electron gun}, series = {Journal of Vacuum Science \& Technology B}, volume = {38}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, publisher = {AIP Publishing}, doi = {10.1116/1.5139316}, abstract = {A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40\% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8.}, language = {en} } @inproceedings{HerdlKueddelsmannSchelsetal., author = {Herdl, Florian and Kueddelsmann, Maximillian J. and Schels, Andreas and Bachmann, Michael and Edler, Simon and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Prugger, Alexander and Dillig, Michael and Dams, Florian and Schreiner, Rupert and Coile{\´a}in, Cormac {\´O}. and Zimmermann, Stefan and Pahlke, Andreas and Duesberg, Georg S.}, title = {Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels}, series = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, booktitle = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, publisher = {IEEE}, isbn = {979-8-3503-0143-4}, doi = {10.1109/IVNC57695.2023.10188974}, pages = {14 -- 16}, abstract = {In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions.}, language = {en} } @article{SerbunBornmannNavitskietal., author = {Serbun, Pavel and Bornmann, Benjamin and Navitski, Aliaksandr and M{\"u}ller, G{\"u}nter and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Stable field emission of single B-doped Si tips and linear current scaling of uniform tip arrays for integrated vacuum microelectronic devices}, series = {Journal of Vacuum Science \& Technology B Nanotechnology and Microelectronics}, volume = {31}, journal = {Journal of Vacuum Science \& Technology B Nanotechnology and Microelectronics}, number = {2}, publisher = {AIP Publishing}, doi = {10.1116/1.4765088}, abstract = {Advanced Si-based semiconductor technology is most suitable to fabricate uniform nanostructures as integrated field emitter arrays for novel vacuum electronic devices. In order to improve the field emission homogeneity and stability of p-type silicon tip arrays for pulsed sensor applications, the authors have systematically studied the influence of the fabrication parameters on the tip shape and on the specific operating conditions. Based on detailed design calculations of the field enhancement, they have fabricated two series of hexagonal arrays of B-doped Si-tips in a triangular arrangement. The first (second) type contains three (four) patches with different number of tips (1, 91, 547 and 1, 19, 1027, 4447 for the first and second type, respectively) of about 1 (2.5) μm height, ∼20 (20) nm apex radius, and 20 (10) μm pitch. The field emission properties of both individual tips and complete arrays were investigated with a field emission scanning microscope at a pressure of 10-9 mbar. The current plateau of these tips typically occurs at about 10 (3) nA and around 65 (25) V/μm field level. In this carrier saturation range, single tips provide the highest current stability (<5\%) and optical current switching ratio (∼2.5). Fairly homogeneous emission of the tip arrays leads to an undershooting of the expected linear scaling of the mean plateau current as well as to a much improved current stability (<1\%).}, language = {en} } @inproceedings{DamsSchreiner, author = {Dams, Florian and Schreiner, Rupert}, title = {A high thermal resistance MEMS-based Pirani vacuum sensor chip}, series = {Smart sensors, actuators and MEMS VI : 24 - 26 April 2013, Grenoble, France / [part of SPIE microtechnologies]}, booktitle = {Smart sensors, actuators and MEMS VI : 24 - 26 April 2013, Grenoble, France / [part of SPIE microtechnologies]}, publisher = {SPIE}, address = {Bellingham, Wash.}, doi = {10.1117/12.2017345}, abstract = {The performance of thermal conductivity vacuum gauges can be improved by a well-designed geometry. The lower measurement range limit is determined by the size of the active sensing area and the thermal conduction heat losses through the supporting structures. The upper measurement range is limited by the distance between the heated element and the cold reference plane. Silicon based MEMS-technology gives the possibility to fabricate both sensing structures with suitable areas out of low thermal conductive materials and narrow gaps in order to extend the measurement range in both directions. In this work we present a MEMS-process to fabricate high thermal resistance sensor structures. The rectangular sensitive areas are anchored by four beams and are structured out of low thermal conductive PECVD-siliconnitride films with 1 µm in thickness. The metallic heating structure is completely embedded in the SiN-layer. Both sensitive area and its support beams were released from the silicon bulk material by anisotropic underetching. In this way a free-supporting structure with a gap of 150 μm to the silicon substrate was formed. The influence of the filament geometry and temperature was systematically investigated to determine the properties of the chips as thermal conductivity vacuum gauges. The temperature of the sensitive area was held constant by a self-balancing bridge circuit and the heating power was measured by a Δ-Σ-ADC. The average solid state thermal conductivity is in the order of 106WK1. The measuring range of the most sensitive structures covers 8 orders of magnitude from 105 mbar to 1000mbar.}, language = {en} } @article{SchreinerLangerPrommesbergeretal., author = {Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Dams, Florian}, title = {Compact and Energy-Efficient Field Emission Cathodes for Sensor Applications}, series = {Advanced Materials Research}, volume = {1024}, journal = {Advanced Materials Research}, publisher = {Scientific.net}, doi = {10.4028/www.scientific.net/amr.1024.372}, pages = {372 -- 375}, abstract = {We report on miniaturized silicon field emitter arrays for the application in compact and energy-saving vacuum-microelectronic devices, e.g. sensors or x-ray tubes. Since standard silicon semiconductor technology has been used for the fabrication, they may be easily integrated with other silicon based circuits and devices on the same chip. The silicon tip geometry and the operating conditions were optimized in order to obtain highly uniform and stable electron field emission from large area cathode arrays. A series of uniform hexagonal tip arrays containing each 547 tips were fabricated and characterized. The electron emission properties of both individual tips as well as of complete emitter arrays were investigated. A saturation level in the voltage-current characteristics was found, which can be explained by the limitation of the supply of electrons due to the p-type silicon wafer material. When operating the arrays in the current saturation regime at an emission current of ~ 1 nA per tip, a highly stable and low noise emission can be observed.}, language = {en} } @article{DamsSchreiner, author = {Dams, Florian and Schreiner, Rupert}, title = {Influencing factors on the sensitivity of MEMS-based thermal conductivity vacuum gauges}, series = {Journal of vacuum science \& technology A}, volume = {32}, journal = {Journal of vacuum science \& technology A}, number = {3}, publisher = {AVS}, doi = {10.1116/1.4867486}, abstract = {The measurement range of thermal conductivity vacuum gauges is mainly influenced by the sensitivity of the sensing element to variations in pressure. An enhanced definition of sensitivity shows its theoretical dependence on the geometric measures of the sensor element at the whole pressure range. This value gives the possibility of direct comparison between different types of sensor structures without the influence of the operating conditions. To study the influencing factors, sensor chips with heated surfaces in the order of some tens of mm 2 were realized by microelectromechanical systems-based fabrication techniques. By a silicon-glass hybrid process two cold planes were formed in a distance of 150 mu m above and below the heated element. The thermal conductance of devices with different geometric measures was determined in constant temperature operating mode by usage of embedded measurement equipment. In this configuration the sensor signals were sensitive to pressure in a region from 10(-5) mbar. The sensitivity was extracted by a fit of the theoretical model to the measurement data and showed the predicted dependencies on the geometric measures. (C) 2014 American Vacuum Society.}, language = {en} } @article{DamsNavitskiPrommesbergeretal., author = {Dams, Florian and Navitski, Aliaksandr and Prommesberger, Christian and Serbun, Pavel and Langer, Christoph and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {Homogeneous Field Emission Cathodes With Precisely Adjustable Geometry Fabricated by Silicon Technology}, series = {IEEE Transactions on Electron Devices}, volume = {59}, journal = {IEEE Transactions on Electron Devices}, number = {10}, publisher = {IEEE}, issn = {0018-9383}, doi = {10.1109/TED.2012.2206598}, pages = {2832 -- 2837}, abstract = {Silicon-based cathodes with precisely aligned field emitter arrays of sharp tips applicable for miniaturized electron sources were successfully fabricated and characterized. This was made possible by an improved fabrication process using wet thermal oxidation, wet etching, and reactive-ion etching steps with adjustable anisotropy. As substrate materials, both p-doped silicon and n-doped silicon were used. The cathode chips contain about 3 × 10 5 Si tips/cm 2 in a triangular array with tip heights of 2.5 μm, tip radii of less than 30 nm, and spacing of 20 μm. Well-aligned field emission (FE) and excellent homogeneity from all tips (i.e., 100\% efficiency) and maximum stable currents of typically 0.1 μA (0.6 μA) for p (n)-type Si were reproducibly achieved. The current-voltage characteristics of the p-Si tips exhibit the expected saturation at around 10 nA with around ten times better current stability, whereas the n-Si tips show the usual Fowler-Nordheim behavior. Additional coating of the Si tips with 5-nm Cr and 10-nm Au layers resulted in improved stability and at least five times higher average FE current limits (about 3 μA) at about 30\% higher operation voltage.}, language = {en} } @inproceedings{DamsPrommesbergerSchreiner, author = {Dams, Florian and Prommesberger, Christian and Schreiner, Rupert}, title = {Fabrication process of silicon-tip-arrays for field emission applications}, series = {24th International Vacuum Nanoelectronics Conference (IVNC), 2011 : 18 - 22 July 2011, Historische Stadthalle Wuppertal, Germany}, booktitle = {24th International Vacuum Nanoelectronics Conference (IVNC), 2011 : 18 - 22 July 2011, Historische Stadthalle Wuppertal, Germany}, publisher = {IEEE}, isbn = {978-3-00-035081-8}, issn = {2380-6311}, pages = {49 -- 50}, abstract = {A micromachined process to assemble homogeneous and reproducible tip arrays for field emission applications is developed and characterized. As substrate material p- as well as n-doped silicon is used. Lateral position of the tips is defined by structuring silicon dioxide to discs in a photolithographic process. Vertical structure of the tips is defined by a combination of RIE dry etching with controlled anisotropy and thermally oxidization of silicon in order to sharpen the tips. Hence field emitter arrays (FEAs) can be assembled both as bare and coated cathodes. To assemble field emission diodes, this fabrication process allows placing a metal anode in a micrometer order distance to the tips by a self-aligning procedure. The anode is placed in an evaporation process whereupon sharpening oxide is used as isolator between anode and cathode. Electrical characterization of the cathodes showed very good homogeneity, well alignment and stability over time of emission current from all tips (i.e. 100\% efficiency).}, language = {en} } @misc{LautenschlaegerLeisDendorferetal., author = {Lautenschl{\"a}ger, Toni and Leis, Alexander and Dendorfer, Sebastian and Palm, Christoph and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Dams, Florian and Bornmann, Benjamin and Navitski, Aliaksandr and Serbun, Pavel and M{\"u}ller, G{\"u}nter and Liebetruth, Thomas and Kohlert, Dieter and Pernsteiner, Jochen and Schreier, Franz and Heerklotz, Sabrina and Heerklotz, Allwin and Boos, Alexander and Herwald, Dominik and Monkman, Gareth J. and Treiber, Daniel and Mayer, Matthias and H{\"o}rner, Eva and Bentz, Alexander and Shamonin (Chamonine), Mikhail and Johansen, S{\o}ren Peter and Reichel, Marco and Stoll, Andrea and Briem, Ulrich and Dullien, Silvia and Renkawitz, Tobias and Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Penzkofer, Rainer and Barnsteiner, K. and Jovanovik, M. and Wernecke, P. and V{\"o}gele, A. and Bachmann, T. and Pl{\"o}tz, Martin and Schliekmann, Claus and Wels, Harald and Helmberger, Paul and Kaspar, Marcel and H{\"o}nicka, M. and Schrammel, Siegfried and Enser, Markus and Schmidmeier, Monika and Schroll-Decker, Irmgard and Haug, Sonja and Gelfert, Verena and Vernim, Matthias}, title = {Forschungsbericht 2012}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7834}, pages = {64}, language = {de} }