@inproceedings{HerdlBachmannWohlfartsstaetteretal., author = {Herdl, Florian and Bachmann, Michael and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Dudeck, Markus and Eder, Magdalena and Meyer, Manuel and Pahlke, Andreas and Edler, Simon and Schels, Andreas and Hansch, Walter and Schreiner, Rupert and Wohlfartsstatter, Dominik and Dusberg, Felix}, title = {A novel current dependent field emission performance test}, series = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, booktitle = {2021 34th International Vacuum Nanoelectronics Conference (IVNC): 5-9 July 2021, Lyon, France}, doi = {10.1109/IVNC52431.2021.9600695}, pages = {1 -- 2}, abstract = {A current dependent performance test for comparison of different field emitter arrays is introduced. Statistical analysis is enabled due to a short measurement time and as a main feature the electric field shift, comparable to the degradation of the emitter is examined. Significance of the test method is shown by a comparison of field emitter arrays with different doping levels.}, language = {en} } @article{BachmannDuesbergLangeretal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Herdl, Florian and Bergbreiter, Lukas and Dams, Florian and Miyakawa, Natuski and Eggert, Tobias and Pahlke, Andreas and Edler, Simon and Prommesberger, Christian and Ławrowski, Robert Damian and Hausladen, Matthias and Schreiner, Rupert}, title = {Vacuum-sealed field emission electron gun}, series = {Journal of Vacuum Science \& Technology B}, volume = {38}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, publisher = {AIP Publishing}, doi = {10.1116/1.5139316}, abstract = {A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40\% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8.}, language = {en} } @article{EdlerBachmannBreueretal., author = {Edler, Simon and Bachmann, Michael and Breuer, Janis and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Jakšič, Jasna and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Influence of adsorbates on the performance of a field emitter array in a high voltage triode setup}, series = {Journal of Applied Physics}, volume = {122}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4987134}, abstract = {In the present work, black-silicon field emitter arrays (FEAs) are investigated regarding the influence of residual gas pressure on the characteristics and lifetime in the high voltage triode setup. Current-voltage-characteristics at different pressure levels are recorded and show a decreasing emission current with rising pressure. This decrease can be explained by an increase of the work function and charging of the emitter surface caused by adsorbates. The emission current can be restored to its initial value by heating of the FEA up to 110 °C during active emission. With this regeneration procedure, an extended lifetime from about 20 h to 440 h at a residual gas pressure of 10-5 mbar is achieved.}, language = {en} } @article{BreuerBachmannDuesbergetal., author = {Breuer, Janis and Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Edler, Simon and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Schreiner, Rupert and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk}, title = {Extraction of the current distribution out of saturated integral measurement data of p-type silicon field emitter arrays}, series = {Journal of Vacuum Science and Technology B}, volume = {36}, journal = {Journal of Vacuum Science and Technology B}, number = {5}, publisher = {AIP Publishing}, doi = {10.1116/1.5035189}, abstract = {At the moment, only complicated techniques are known for the determination of array properties of field emitter arrays such as the number of active tips, the current distribution, or the individual tip radii. In this work, a method for extracting these parameters from integral measurement data is presented. A model describing the characteristics of a single emitter, including the saturation as a function of the applied voltage and the emitter radius, is developed. It is shown that experimental data of field emitter arrays can be represented as the sum of these functions and the characteristic parameters can be fitted to field emission data of an array. Using this method, the values of the radii as well as the parameters of distribution models can be determined directly. Analysis of experimental data from p-type Si emitter arrays shows that only 1-2\% of the tips contribute significantly.}, language = {en} } @article{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk and M{\"u}ller, G{\"u}nter}, title = {Extraction of the characteristics of current-limiting elements from field emission measurement data}, series = {Journal of Vacuum Science \& Technology B}, volume = {35}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, doi = {10.1116/1.4971768}, abstract = {In this contribution, the authors will present an algorithm to extract the characteristics of nonideal field emission circuit elements from saturation-limited field emission measurement data. The method for calculating the voltage drop on current-limiting circuit elements is based on circuit theory as well as Newton's method. Since the only assumption the authors make on the current-limiting circuit is a connection in series, this method is applicable to most field emission data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters as well as the parameter correlations are fully taken into account throughout the algorithm. N-type silicon samples with varying external serial resistors are analyzed. All results show a good agreement to the nominal resistor values. Additionally, several p-type samples are analyzed, showing a diodelike behavior. The extracted current-limiting characteristics of the p-type samples are in good agreement with a pn-junction model. The stability of the emission current of the p-type samples is measured by constant voltage measurements and compared to the extracted current-limiting characteristics. The application of the algorithm to measurement data shows that the given algorithm is a valuable tool to analyze field emission measurement data influenced by nonemissive processes.}, language = {en} } @article{PrommesbergerBachmannDuesbergetal., author = {Prommesberger, Christian and Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Ławrowski, Robert Damian and Hofmann, Martin and Pahlke, Andreas and Schreiner, Rupert}, title = {Regulation of the Transmitted Electron Flux in a Field-Emission Electron Source Demonstrated on Si Nanowhisker Cathodes}, series = {IEEE Transactions on Electron Devices}, volume = {64}, journal = {IEEE Transactions on Electron Devices}, number = {12}, issn = {5128-5133}, doi = {10.1109/TED.2017.2763239}, abstract = {We report on a method to stabilize the transmitted electron flux in a field-emission electron source using an external regulation circuit. The electron source was realized with an array of silicon (Si) nanowhiskers on the top of elongated pillar structures, a mica spacer, and an extraction grid made of Si. As for most applications, the emitted electron current from the cathode is not as crucial as the transmitted electron flux through the extraction grid toward the anode. We investigated a method which allows the regulation directly by the emitted electron flux and not merely on the cathode current. By using this method, we were able to stabilize the emitted electron flux of our electron source down to values below 1\%. Simultaneously, it was shown that there is the possibility to stabilize the influencing value in the real application as well. The effectiveness of this method was demonstrated successfully with an X-ray source setup. The measured X-ray photon count rate was stabilized to a standard deviation of 0.30\% at a pressure of 1 × 10 -7 mbar. Even in harsh environment of 2 × 10 -5 mbar, a stabilization of the X-ray photon count rate down to a value of 0.63\% was achieved.}, language = {en} } @misc{DuesbergBachmannEdleretal., author = {D{\"u}sberg, Felix and Bachmann, Michael and Edler, Simon and Pahlke, Andreas and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert and Bunert, Erik and Wendt, Cornelius and Zimmermann, Stefan}, title = {Novel Non-Radiative Electron Source}, series = {43rd International Symposium of Capillary Chromatography \& 16h GC x GC Symposium 2019}, journal = {43rd International Symposium of Capillary Chromatography \& 16h GC x GC Symposium 2019}, abstract = {Recently a non-radioactive electron capture detector based on a thermionic electron emitter has been demonstrated [1]. Using field emitter arrays (FEAs) would yield non-radioactive portable low power devices with fast switching capability. By combining FEAs with a vacuum-sealed housing and an electron transparent membrane window, such electron sources can be operated in an ambient pressure environment.}, language = {en} } @article{BachmannDuesbergPahlkeetal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Edler, Simon and Schels, Andreas and Herdl, Florian and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {High current silicon nanowire field emitter arrays}, series = {Journal of Vacuum Science \& Technology B}, volume = {40}, journal = {Journal of Vacuum Science \& Technology B}, number = {1}, publisher = {AIP Publishing}, doi = {10.1116/6.0001639}, abstract = {Arrays of n-doped silicon nanowire field emitters with a high aspect ratio are realized by a novel dry etching technique. Compared to the high current silicon emitters in the literature, the manufacturing process is much simpler and requires only a single photolithography step and two dry etching steps. The cathodes realized with this method exhibit a total current of 20 mA from an active area of 4×4 mm2, which is significantly higher than that for most known structures made from silicon and also represents good performance in comparison with other emitter types, e.g., carbon nanotubes. In addition to characterization in ultrahigh vacuum, measurements at 10-5 mbar are performed and compared with our recent silicon emitters. Compared to these cathodes, the structures with the nanowires exhibit at least two orders of magnitude higher current-carrying capability.}, language = {en} } @inproceedings{LangerHausladenPrommesbergeretal., author = {Langer, Christoph and Hausladen, Matthias and Prommesberger, Christian and Ławrowski, Robert Damian and Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Shamonin (Chamonine), Mikhail and Schreiner, Rupert}, title = {Field emission current investigation of p-type and metallized silicon emitters in the frequency domain}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520127}, pages = {1-2}, abstract = {We investigated two different field emitter arrays consisting of 10×10 p-type and 10×10 undoped Au-coated high aspect ratio silicon tips. The I-V characterization of the p-type sample showed a pronounced saturation for voltages higher than 500 V and a maximum emission current of 39 nA. The metallized sample revealed a FN-like emission up to several μA. The metallized and the p-type sample operating below the saturation region showed high current fluctuations of ±16\%. Whereas, the metallized sample with current regulation and the p-type sample in the saturation yielded a current stability of ±0.4\% and ±0.3\%, respectively. Investigations in the frequency domain revealed the for field emission typical 1/f-noise. By operating in the saturation region (p-type sample) or using an emission current regulation (metallized sample) the noise level was reduced by at least 20 dB. Finally, the p-type sample was illuminated by a light emitting diode to increase and modulate the emission current in the saturation region. The emission current was increased by a factor of 3.7 to 145 nA. With this configuration we emulated an unstable emission behavior and evaluated the performance of our emission current regulation circuit.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Extraction of the characteristics of limiting elements from field emission measurement data}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551474}, pages = {81 -- 82}, abstract = {In this contribution we will present an algorithm to extract the characteristics of non-Fowler-Nordheim (FN) circuit elements from saturation limited field emission (FE) measurement data. The method for calculating the voltage drop on limiting circuit elements is based on circuit theory as well as Newton's method. Since no assumption on the limiting circuit is made, this method is applicable to any FE data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters are fully taken into account throughout the algorithm. External serial resistors and a limiting p-doped substrate are analyzed, where the latter shows a diode-like behavior.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Control of the electron source current}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051550}, pages = {66 -- 67}, abstract = {A control circuit to stabilize the flux of electrons transmitted through an extractor electrode is presented. By controlling the emission current a fluctuation with a standard deviation of 0.015\% is observed. However, the achievable stability of the transmitted electron current is limited due to a variation of the extraction grid current ratio showing a standard deviation of 4.33\%. By regulating the difference of the emission current and the extraction grid current an improved stability of the transmitted electron current down to a standard deviation of 0.280\% is observed. Even with operation at 2 × 10 -5 mbar a standard deviation of 0.558\% is achieved.}, language = {en} } @article{LangerPrommesbergerŁawrowskietal., author = {Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Schreiner, Rupert and Serbun, Pavel and M{\"u}ller, G{\"u}nter and D{\"u}sberg, Felix and Hofmann, Martin and Bachmann, Michael and Pahlke, Andreas}, title = {Field emission properties of p-type black silicon on pillar structures}, series = {Journal of Vacuum Science \& Technology B}, volume = {34}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, doi = {10.1116/1.4943919}, abstract = {Arrays of black silicon field emission pillar structures were fabricated on p-type silicon substrates. Two types of samples with the same number of pillars (arrays of 10 × 10) but different pillar heights (8 and 20 μm) were prepared as well as a black silicon reference sample without pillars. The field emission properties of these cathodes were investigated both by means of integral current-voltage measurements and by field emission scanning microscopy. Samples with a pillar height of 20 μm revealed onset fields as low as 6.4 V/μm, field enhancement factors up to 800, and emission currents up to 8 μA at an applied field of 20 V/μm. Due to the p-type material, a saturation of the emission current for fields above 11 V/μm was observed. This saturation leads to a stable operation with a current fluctuation of less than ±8\%. It was found that samples with a pillar height of 20 μm showed improved emission characteristics compared to samples with a pillar height of 8 μm or without pillars. The voltage maps revealed an increased emission homogeneity after a "burn-in" sequence of the sample. The current map showed that a few of the pillars dominate the emission. Integral current stability measurements were performed under different vacuum pressures, in order to investigate altered emission behavior and a potential degradation of the emitters. At pressures above 10-6 mbar, the sample starts to degrade irreversibly. Nevertheless, even after a harsh treatment over 30 min at 5 × 10-5 mbar and at an applied field of 23 V/μm, the cathode was still operating, and did not fail during further operation over 20 h at 5 × 10-8 mbar and at an applied field of 28 V/μm.}, language = {en} } @article{BachmannDuesbergPahlkeetal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Edler, Simon and Schels, Andreas and Herdl, Florian and Hausladen, Matthias and Buchner, Philipp and Schreiner, Rupert}, title = {The "LED-version" of the electron gun: An electron source for operation in ambient pressure environments based on silicon field emitter arrays}, series = {Vakuum in Forschung und Praxis}, volume = {35}, journal = {Vakuum in Forschung und Praxis}, number = {3}, publisher = {Wiley}, doi = {10.1002/vipr.202300801}, pages = {32 -- 37}, abstract = {We report on our progress to develop and optimize electron sources for practical applications. A simple fabrication process is introduced based on a wafer dicing saw and a wet chemical etch step without the need for a clean room. Due to the formation of crystal facets the samples show a homogeneous geometry throughout the array. Characterization techniques are developed to systematically compare various arrays. A very defined measurement procedure based on current controlled IV-sweeps as well as lifetime measurements at various currents is proposed. To investigate the current distribution in the array a commercial CMOS detector is used and shows the potential for in depth analysis of the arrays. Finally, a compact hermetically sealed housing is presented enabling electron generation in atmospheric pressure environments.}, language = {en} } @inproceedings{HerdlKueddelsmannSchelsetal., author = {Herdl, Florian and Kueddelsmann, Maximillian J. and Schels, Andreas and Bachmann, Michael and Edler, Simon and Wohlfartsst{\"a}tter, Dominik and D{\"u}sberg, Felix and Prugger, Alexander and Dillig, Michael and Dams, Florian and Schreiner, Rupert and Coile{\´a}in, Cormac {\´O}. and Zimmermann, Stefan and Pahlke, Andreas and Duesberg, Georg S.}, title = {Characterization and Operation of Graphene-Oxide-Semiconductor Emitters at Atmospheric Pressure Levels}, series = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, booktitle = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, publisher = {IEEE}, isbn = {979-8-3503-0143-4}, doi = {10.1109/IVNC57695.2023.10188974}, pages = {14 -- 16}, abstract = {In recent years Graphene-Oxide-Semiconductor (GOS) electron emitters have attracted a lot of interest due to their outstanding durability in modest vacuum conditions. However, the performance at ambient pressure remains largely unexplored. In this study GOS-emitters are characterized in nitrogen and air at atmospheric pressure, and compared with their vacuum characteristics. For this purpose, lifetime and IV-characteristics measurements are shown. Furthermore, the GOS-emitter was operated as an ionization source for ion mobility spectrometry (IMS) at ambient conditions.}, language = {en} } @inproceedings{SchelsHerdlHausladenetal., author = {Schels, Andreas and Herdl, Florian and Hausladen, Matthias and Wohlfartsst{\"a}tter, Dominik and Bachmann, Michael and Edler, Simon and D{\"u}sberg, Felix and Pahlke, Andreas and Buchner, Philipp and Schreiner, Rupert and Hansch, Walter}, title = {Beta Factor Mapping of Individual Emitting Tips During Integral Operation of Field Emission Arrays}, series = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, booktitle = {2023 IEEE 36th International Vacuum Nanoelectronics Conference (IVNC), 10-13 July 2023, Cambridge, MA, USA}, publisher = {IEEE}, isbn = {979-8-3503-0143-4}, doi = {10.1109/IVNC57695.2023.10188957}, pages = {224 -- 226}, abstract = {Emission uniformity mappings of field emitter arrays provide important insight into degradation mechanisms, but are often laborious, non-integral, costly, or not quantifiable. Here, a low-cost Raspberry Pi HQ camera is used as an extraction anode to quantify the emission distribution in field emitter arrays. A verification measurement using controlled SEM electron beams proves, that current-voltage characteristics of individual emission sites can be determined by combining the integral electrical data with the image data. The characteristics are used to quantify the field enhancement factors of an 30x30 silicon field emitter array during integral operation. Comparison of the field enhancement factor distributions before and after a one-hour constant current operation at 1 µA shows an increase from 50 actively emitting tips before to 156 after the measurement. It is shown, that the distribution of field enhancement factors shifts towards lower values, due to the increasing degradation for high field enhancement tips, especially above 1500.}, language = {en} } @inproceedings{SerbunPorshynMuelleretal., author = {Serbun, Pavel and Porshyn, V. and M{\"u}ller, G{\"u}nter and Mingels, S. and L{\"u}tzenkirchen-Hecht, Dirk and Bachmann, Michael and D{\"u}sberg, Felix and Dams, Florian and Hofmann, Martin and Pahlke, Andreas and Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Field emission behavior of Au-tip-coated p-type Si pillar structures}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551516}, pages = {181 -- 182}, abstract = {Precisely aligned high-aspect-ratio (HAR) silicon tip arrays were fabricated using enhanced reactive ion etching with an inductively-coupled-plasma followed by a sharpening oxidation. A gold thin film was then sputtered only on the tips of the HAR structures. Field-emission (FE) properties from Au-coated HAR p-Si tip array cathodes have been systematically investigated by means of field emission scanning microscopy (FESM). A rather high efficiency of the HAR Si structures (71\% at 550 V), but limited homogeneous FE with currents of 1-600 nA might be correlated with the varying geometry of the tips and the presence of oxides. I-V measurements of single Au-coated HAR emitters revealed activation effects and the saturation current region at 3 nA. An increase of the saturation current by 4 orders of magnitude was observed during 20 hours of conditioning at constant voltage, which finally resulted in nearly reproducible FN curves with a ß-factor of 473. An excellent stability of the emission current of less than 1 \% was obtained during the additional long-time conditioning at constant voltage. Optical switching under halogen lamp illumination resulted in at least 2 times higher saturation currents and showed a linear dependence of the FE current on the light color temperature.}, language = {en} }