@article{ManarancheHornberger, author = {Manaranche, Claire and Hornberger, Helga}, title = {A proposal for the classification of dental alloys according to their resistance to corrosion}, series = {Dental Materials}, volume = {23}, journal = {Dental Materials}, number = {11}, doi = {10.1016/j.dental.2006.11.030}, pages = {1428 -- 1437}, abstract = {Objectives The purpose of this study was to establish a method to compare and classify dental alloys in relation to their resistance to corrosion. Methods Alloy samples and pure metal samples were prepared and tested in chemical and electrochemical corrosion according to ISO 10271. For electrochemical test, the rest potential versus time and a potentiodynamic scan were recorded. After chemical corrosion test, the ions released were analyzed by ICP (induced coupled plasma) spectroscopy. Results High gold alloys had a similar polarization curve than gold. The same effect was observed for Pd-base alloys, their curves were similar to the one of palladium. The ions released during chemical corrosion were non-precious metallic ions. Thereby Ni-Cr alloys were found to release the most ions. Au-Pt alloys showed the highest release of ions compared with other precious alloys but low compared with Ni-Cr. Electrochemical corrosion was more aggressive than chemical corrosion and every type of elements was etched, the higher the precious metal content, the higher the resistance to corrosion of the alloy. Discussion Using the recorded data, a classification system for electrochemical corrosion was developed and discussed to judge the results. Hereby were gold and zinc used as reference materials. The applied classification system defines five classes and it is proposed that alloys of class V are not acceptable. For chemical corrosion resistance, three classes were distinguished according to the quantity of metallic ions released and it is proposed that class III (100-1000 μg/cm2 week) is not acceptable. Palladium and Pd-base alloys showed a higher electrochemical and chemical corrosion resistance than gold.}, language = {en} } @article{ManarancheHornberger, author = {Manaranche, Claire and Hornberger, Helga}, title = {A proposal for the classification of precious dental alloys according to their resistance to corrosion based on the iso 10271 standard}, series = {European Cells and Materials}, volume = {5}, journal = {European Cells and Materials}, number = {SUPPL. 1}, publisher = {Univ. of Wales}, address = {Aberystwyth, Wales}, pages = {34 -- 36}, abstract = {A lot of dental alloys are available on the market. Among these alloys, there are the conventional alloys, the so called casting alloys used without ceramics, the bonding alloys used with high fusing ceramics and the universal alloys used without or with low fusing ceramics. It is im portant to know the physical and mechanical properties of these materials but also their biocompatibility and their resistance to corrosion. Dental alloys are generally placed in the mouth for many years, they must not induce adverse biological reactions such as gingival swelling and erythema, mucosal pain and lichenoid reactions. Although these troubles are often caused not by the materials itself (1, 2), they can be induced by the metallic ions released during their corrosion. In order to decrease the risks to the health, it is necessary to study the corrosion of the dental alloys. Currently, the ISO 10271 Standard (3), describes 3 different corrosion tests: a static immersion test (chemical corrosion), an electrochemic al test and a tarnish test. However, there are no indications yet about the possible interpretation of test results. In this paper, we propose a method to compare and classify the dental alloys in relation to their chemical and electrochemical corrosion results. METHODS: The material tested are pure metals such as gold, palladium, silver, copper and zinc as well as dental alloys which are commercially sold (see Table 1). 54 different materials have been tested. A minimum of four samples of each material were tested by electrochemic al corrosio n and a minimum of three in chemical test. The samples were cast and prepared as indicated by the manufacturer and by the ISO 10271. For the electrochemical test, the samples are in the form of disks 11 mm in diameter. They are tested with a potentiostat/galvanostat Voltalab Model 21. For the chemical test, the samples are rectangular with the dimensions 35X10X1.7 mm. The solution used and the operating conditions are described in the ISO 10271. The concentration of metallic ions released is measured by Induced Coupled Plasma}, language = {en} }