@article{WoehlMaierGehmertetal., author = {W{\"o}hl, Rebecca and Maier, Johannes and Gehmert, Sebastian and Palm, Christoph and Riebschl{\"a}ger, Birgit and Nerlich, Michael and Huber, Michaela}, title = {3D Analysis of Osteosyntheses Material using semi-automated CT Segmentation}, series = {BMC Musculoskeletal Disorders}, volume = {19}, journal = {BMC Musculoskeletal Disorders}, publisher = {Springer Nature}, doi = {10.1186/s12891-018-1975-0}, pages = {1 -- 8}, abstract = {Backround Scaphoidectomy and midcarpal fusion can be performed using traditional fixation methods like K-wires, staples, screws or different dorsal (non)locking arthrodesis systems. The aim of this study is to test the Aptus four corner locking plate and to compare the clinical findings to the data revealed by CT scans and semi-automated segmentation. Methods: This is a retrospective review of eleven patients suffering from scapholunate advanced collapse (SLAC) or scaphoid non-union advanced collapse (SNAC) wrist, who received a four corner fusion between August 2011 and July 2014. The clinical evaluation consisted of measuring the range of motion (ROM), strength and pain on a visual analogue scale (VAS). Additionally, the Disabilities of the Arm, Shoulder and Hand (QuickDASH) and the Mayo Wrist Score were assessed. A computerized tomography (CT) of the wrist was obtained six weeks postoperatively. After semi-automated segmentation of the CT scans, the models were post processed and surveyed. Results During the six-month follow-up mean range of motion (ROM) of the operated wrist was 60°, consisting of 30° extension and 30° flexion. While pain levels decreased significantly, 54\% of grip strength and 89\% of pinch strength were preserved compared to the contralateral healthy wrist. Union could be detected in all CT scans of the wrist. While X-ray pictures obtained postoperatively revealed no pathology, two user related technical complications were found through the 3D analysis, which correlated to the clinical outcome. Conclusion Due to semi-automated segmentation and 3D analysis it has been proved that the plate design can keep up to the manufacturers' promises. Over all, this case series confirmed that the plate can compete with the coexisting techniques concerning clinical outcome, union and complication rate.}, subject = {Handchirurgie}, language = {en} } @article{PalmDehnhardtVietenetal., author = {Palm, Christoph and Dehnhardt, Markus and Vieten, Andrea and Pietrzyk, Uwe and Bauer, Andreas and Zilles, Karl}, title = {3D rat brain tumors}, series = {Naunyn-Schmiedebergs Archives of Pharmacology}, volume = {371}, journal = {Naunyn-Schmiedebergs Archives of Pharmacology}, number = {R103}, language = {en} } @article{NeuschaeferRubeLehmannPalmetal., author = {Neuschaefer-Rube, C. and Lehmann, Thomas M. and Palm, Christoph and Bredno, J. and Klajman, S. and Spitzer, Klaus}, title = {3D-Visualisierung glottaler Abduktionsbewegungen}, series = {Aktuelle phoniatrisch-p{\"a}daudiologische Aspekte}, volume = {2001/2002}, journal = {Aktuelle phoniatrisch-p{\"a}daudiologische Aspekte}, number = {9}, publisher = {Median}, isbn = {3-922766-76-5}, pages = {58 -- 61}, language = {de} } @article{GrassmannMengelkampBrandletal., author = {Graßmann, Felix and Mengelkamp, Judith and Brandl, Caroline and Harsch, Sebastian and Zimmermann, Martina E. and Linkohr, Birgit and Peters, Annette and Heid, Iris M. and Palm, Christoph and Weber, Bernhard H. F.}, title = {A Deep Learning Algorithm for Prediction of Age-Related Eye Disease Study Severity Scale for Age-Related Macular Degeneration from Color Fundus Photography}, series = {Ophtalmology}, volume = {125}, journal = {Ophtalmology}, number = {9}, publisher = {Elsevier}, doi = {10.1016/j.ophtha.2018.02.037}, pages = {1410 -- 1420}, abstract = {Purpose Age-related macular degeneration (AMD) is a common threat to vision. While classification of disease stages is critical to understanding disease risk and progression, several systems based on color fundus photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein, we present an automated computer-based classification algorithm. Design Algorithm development for AMD classification based on a large collection of color fundus images. Validation is performed on a cross-sectional, population-based study. Participants. We included 120 656 manually graded color fundus images from 3654 Age-Related Eye Disease Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health Research in the Region of Augsburg) study. Methods. We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and trained several convolution deep learning architectures. An ensemble of network architectures improved prediction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-based study. Main Outcome Measures. κ Statistics and accuracy to evaluate the concordance between predicted and expert human grader classification. Results. A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test set with a quadratic weighted κ of 92\% (95\% confidence interval, 89\%-92\%) and an overall accuracy of 63.3\%. In the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion of other retinopathies, the weighted and unweighted κ increased to 50\% and 63\%, respectively. Importantly, the algorithm detected 84.2\% of all fundus images with definite signs of early or late AMD. Overall, 94.3\% of healthy fundus images were classified correctly. Conclusions Our deep learning algoritm revealed a weighted κ outperforming human graders in the AREDS study and is suitable to classify AMD fundus images in other datasets using individuals >55 years of age.}, subject = {Senile Makuladegeneration}, language = {en} } @article{HartmannWeihererSchiltzetal., author = {Hartmann, Robin and Weiherer, Maximilian and Schiltz, Daniel and Seitz, Stephan and Lotter, Luisa and Anker, Alexandra and Palm, Christoph and Prantl, Lukas and Br{\´e}bant, Vanessa}, title = {A Novel Method of Outcome Assessment in Breast Reconstruction Surgery: Comparison of Autologous and Alloplastic Techniques Using Three-Dimensional Surface Imaging}, series = {Aesthetic Plastic Surgery}, volume = {44}, journal = {Aesthetic Plastic Surgery}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00266-020-01749-4}, pages = {1980 -- 1987}, abstract = {Background Breast reconstruction is an important coping tool for patients undergoing a mastectomy. There are numerous surgical techniques in breast reconstruction surgery (BRS). Regardless of the technique used, creating a symmetric outcome is crucial for patients and plastic surgeons. Three-dimensional surface imaging enables surgeons and patients to assess the outcome's symmetry in BRS. To discriminate between autologous and alloplastic techniques, we analyzed both techniques using objective optical computerized symmetry analysis. Software was developed that enables clinicians to assess optical breast symmetry using three-dimensional surface imaging. Methods Twenty-seven patients who had undergone autologous (n = 12) or alloplastic (n = 15) BRS received three-dimensional surface imaging. Anthropomorphic data were collected digitally using semiautomatic measurements and automatic measurements. Automatic measurements were taken using the newly developed software. To quantify symmetry, a Symmetry Index is proposed. Results Statistical analysis revealed that there is no dif- ference in the outcome symmetry between the two groups (t test for independent samples; p = 0.48, two-tailed). Conclusion This study's findings provide a foundation for qualitative symmetry assessment in BRS using automatized digital anthropometry. In the present trial, no difference in the outcomes' optical symmetry was detected between autologous and alloplastic approaches.}, subject = {Mammoplastik}, language = {en} } @article{DeSouzaJrPalmMendeletal., author = {De Souza Jr., Luis Antonio and Palm, Christoph and Mendel, Robert and Hook, Christian and Ebigbo, Alanna and Probst, Andreas and Messmann, Helmut and Weber, Silke A. T. and Papa, Jo{\~a}o Paulo}, title = {A survey on Barrett's esophagus analysis using machine learning}, series = {Computers in Biology and Medicine}, volume = {96}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, doi = {10.1016/j.compbiomed.2018.03.014}, pages = {203 -- 213}, abstract = {This work presents a systematic review concerning recent studies and technologies of machine learning for Barrett's esophagus (BE) diagnosis and treatment. The use of artificial intelligence is a brand new and promising way to evaluate such disease. We compile some works published at some well-established databases, such as Science Direct, IEEEXplore, PubMed, Plos One, Multidisciplinary Digital Publishing Institute (MDPI), Association for Computing Machinery (ACM), Springer, and Hindawi Publishing Corporation. Each selected work has been analyzed to present its objective, methodology, and results. The BE progression to dysplasia or adenocarcinoma shows a complex pattern to be detected during endoscopic surveillance. Therefore, it is valuable to assist its diagnosis and automatic identification using computer analysis. The evaluation of the BE dysplasia can be performed through manual or automated segmentation through machine learning techniques. Finally, in this survey, we reviewed recent studies focused on the automatic detection of the neoplastic region for classification purposes using machine learning methods.}, subject = {Speiser{\"o}hrenkrankheit}, language = {en} } @article{EbigboPalmProbstetal., author = {Ebigbo, Alanna and Palm, Christoph and Probst, Andreas and Mendel, Robert and Manzeneder, Johannes and Prinz, Friederike and De Souza Jr., Luis Antonio and Papa, Jo{\~a}o Paulo and Siersema, Peter and Messmann, Helmut}, title = {A technical review of artificial intelligence as applied to gastrointestinal endoscopy: clarifying the terminology}, series = {Endoscopy International Open}, volume = {07}, journal = {Endoscopy International Open}, number = {12}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-1010-5705}, pages = {1616 -- 1623}, abstract = {The growing number of publications on the application of artificial intelligence (AI) in medicine underlines the enormous importance and potential of this emerging field of research. In gastrointestinal endoscopy, AI has been applied to all segments of the gastrointestinal tract most importantly in the detection and characterization of colorectal polyps. However, AI research has been published also in the stomach and esophagus for both neoplastic and non-neoplastic disorders. The various technical as well as medical aspects of AI, however, remain confusing especially for non-expert physicians. This physician-engineer co-authored review explains the basic technical aspects of AI and provides a comprehensive overview of recent publications on AI in gastrointestinal endoscopy. Finally, a basic insight is offered into understanding publications on AI in gastrointestinal endoscopy.}, subject = {Diagnose}, language = {en} } @article{KolevKirchgessnerHoubenetal., author = {Kolev, Kalin and Kirchgeßner, Norbert and Houben, Sebastian and Csisz{\´a}r, Agnes and Rubner, Wolfgang and Palm, Christoph and Eiben, Bj{\"o}rn and Merkel, Rudolf and Cremers, Daniel}, title = {A variational approach to vesicle membrane reconstruction from fluorescence imaging}, series = {Pattern Recognition}, volume = {44}, journal = {Pattern Recognition}, number = {12}, publisher = {Elsevier}, doi = {10.1016/j.patcog.2011.04.019}, pages = {2944 -- 2958}, abstract = {Biological applications like vesicle membrane analysis involve the precise segmentation of 3D structures in noisy volumetric data, obtained by techniques like magnetic resonance imaging (MRI) or laser scanning microscopy (LSM). Dealing with such data is a challenging task and requires robust and accurate segmentation methods. In this article, we propose a novel energy model for 3D segmentation fusing various cues like regional intensity subdivision, edge alignment and orientation information. The uniqueness of the approach consists in the definition of a new anisotropic regularizer, which accounts for the unbalanced slicing of the measured volume data, and the generalization of an efficient numerical scheme for solving the arising minimization problem, based on linearization and fixed-point iteration. We show how the proposed energy model can be optimized globally by making use of recent continuous convex relaxation techniques. The accuracy and robustness of the presented approach are demonstrated by evaluating it on multiple real data sets and comparing it to alternative segmentation methods based on level sets. Although the proposed model is designed with focus on the particular application at hand, it is general enough to be applied to a variety of different segmentation tasks.}, subject = {Dreidimensionale Bildverarbeitung}, language = {en} } @article{RoemmeleMendelBarrettetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Barrett, Caroline and Kiesl, Hans and Rauber, David and R{\"u}ckert, Tobias and Kraus, Lisa and Heinkele, Jakob and Dhillon, Christine and Grosser, Bianca and Prinz, Friederike and Wanzl, Julia and Fleischmann, Carola and Nagl, Sandra and Schnoy, Elisabeth and Schlottmann, Jakob and Dellon, Evan S. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {London}, doi = {10.1038/s41598-022-14605-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-46928}, pages = {10}, abstract = {The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.}, language = {en} } @article{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {ARTIFICIAL INTELLIGENCE (AI) - ASSISTED VESSEL AND TISSUE RECOGNITION IN THIRD-SPACE ENDOSCOPY}, series = {Endoscopy}, volume = {54}, journal = {Endoscopy}, number = {S01}, publisher = {Thieme}, doi = {10.1055/s-0042-1745037}, pages = {S175}, abstract = {Aims Third-space endoscopy procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex interventions with elevated risk of operator-dependent adverse events, such as intra-procedural bleeding and perforation. We aimed to design an artificial intelligence clinical decision support solution (AI-CDSS, "Smart ESD") for the detection and delineation of vessels, tissue structures, and instruments during third-space endoscopy procedures. Methods Twelve full-length third-space endoscopy videos were extracted from the Augsburg University Hospital database. 1686 frames were annotated for the following categories: Submucosal layer, blood vessels, electrosurgical knife and endoscopic instrument. A DeepLabv3+neural network with a 101-layer ResNet backbone was trained and validated internally. Finally, the ability of the AI system to detect visible vessels during ESD and POEM was determined on 24 separate video clips of 7 to 46 seconds duration and showing 33 predefined vessels. These video clips were also assessed by an expert in third-space endoscopy. Results Smart ESD showed a vessel detection rate (VDR) of 93.94\%, while an average of 1.87 false positive signals were recorded per minute. VDR of the expert endoscopist was 90.1\% with no false positive findings. On the internal validation data set using still images, the AI system demonstrated an Intersection over Union (IoU), mean Dice score and pixel accuracy of 63.47\%, 76.18\% and 86.61\%, respectively. Conclusions This is the first AI-CDSS aiming to mitigate operator-dependent limitations during third-space endoscopy. Further clinical trials are underway to better understand the role of AI in such procedures.}, language = {en} }