@article{OttPalmVogtetal., author = {Ott, Tankred and Palm, Christoph and Vogt, Robert and Oberprieler, Christoph}, title = {GinJinn: An object-detection pipeline for automated feature extraction from herbarium specimens}, series = {Applications in Plant Sciences}, volume = {8}, journal = {Applications in Plant Sciences}, number = {6}, publisher = {Wiley, Botanical Society of America}, issn = {2168-0450}, doi = {10.1002/aps3.11351}, pages = {e11351}, abstract = {PREMISE: The generation of morphological data in evolutionary, taxonomic, and ecological studies of plants using herbarium material has traditionally been a labor-intensive task. Recent progress in machine learning using deep artificial neural networks (deep learning) for image classification and object detection has facilitated the establishment of a pipeline for the automatic recognition and extraction of relevant structures in images of herbarium specimens. METHODS AND RESULTS: We implemented an extendable pipeline based on state-of-the-art deep-learning object-detection methods to collect leaf images from herbarium specimens of two species of the genus Leucanthemum. Using 183 specimens as the training data set, our pipeline extracted one or more intact leaves in 95\% of the 61 test images. CONCLUSIONS: We establish GinJinn as a deep-learning object-detection tool for the automatic recognition and extraction of individual leaves or other structures from herbarium specimens. Our pipeline offers greater flexibility and a lower entrance barrier than previous image-processing approaches based on hand-crafted features.}, subject = {Deep Learning}, language = {en} } @article{ScheppachRauberStallhoferetal., author = {Scheppach, Markus W. and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Stallmach, Andreas and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Detection of duodenal villous atrophy on endoscopic images using a deep learning algorithm}, series = {Gastrointestinal Endoscopy}, journal = {Gastrointestinal Endoscopy}, publisher = {Elsevier}, doi = {10.1016/j.gie.2023.01.006}, abstract = {Background and aims Celiac disease with its endoscopic manifestation of villous atrophy is underdiagnosed worldwide. The application of artificial intelligence (AI) for the macroscopic detection of villous atrophy at routine esophagogastroduodenoscopy may improve diagnostic performance. Methods A dataset of 858 endoscopic images of 182 patients with villous atrophy and 846 images from 323 patients with normal duodenal mucosa was collected and used to train a ResNet 18 deep learning model to detect villous atrophy. An external data set was used to test the algorithm, in addition to six fellows and four board certified gastroenterologists. Fellows could consult the AI algorithm's result during the test. From their consultation distribution, a stratification of test images into "easy" and "difficult" was performed and used for classified performance measurement. Results External validation of the AI algorithm yielded values of 90 \%, 76 \%, and 84 \% for sensitivity, specificity, and accuracy, respectively. Fellows scored values of 63 \%, 72 \% and 67 \%, while the corresponding values in experts were 72 \%, 69 \% and 71 \%, respectively. AI consultation significantly improved all trainee performance statistics. While fellows and experts showed significantly lower performance for "difficult" images, the performance of the AI algorithm was stable. Conclusion In this study, an AI algorithm outperformed endoscopy fellows and experts in the detection of villous atrophy on endoscopic still images. AI decision support significantly improved the performance of non-expert endoscopists. The stable performance on "difficult" images suggests a further positive add-on effect in challenging cases.}, language = {en} } @misc{ScheppachRauberStallhoferetal., author = {Scheppach, Markus and Rauber, David and Stallhofer, Johannes and Muzalyova, Anna and Otten, Vera and Manzeneder, Carolin and Schwamberger, Tanja and Wanzl, Julia and Schlottmann, Jakob and Tadic, Vidan and Probst, Andreas and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Fleischmann, Carola and Meinikheim, Michael and Miller, Silvia and M{\"a}rkl, Bruno and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Performance comparison of a deep learning algorithm with endoscopists in the detection of duodenal villous atrophy (VA)}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765421}, pages = {S165}, abstract = {Aims VA is an endoscopic finding of celiac disease (CD), which can easily be missed if pretest probability is low. In this study, we aimed to develop an artificial intelligence (AI) algorithm for the detection of villous atrophy on endoscopic images. Methods 858 images from 182 patients with VA and 846 images from 323 patients with normal duodenal mucosa were used for training and internal validation of an AI algorithm (ResNet18). A separate dataset was used for external validation, as well as determination of detection performance of experts, trainees and trainees with AI support. According to the AI consultation distribution, images were stratified into "easy" and "difficult". Results Internal validation showed 82\%, 85\% and 84\% for sensitivity, specificity and accuracy. External validation showed 90\%, 76\% and 84\%. The algorithm was significantly more sensitive and accurate than trainees, trainees with AI support and experts in endoscopy. AI support in trainees was associated with significantly improved performance. While all endoscopists showed significantly lower detection for "difficult" images, AI performance remained stable. Conclusions The algorithm outperformed trainees and experts in sensitivity and accuracy for VA detection. The significant improvement with AI support suggests a potential clinical benefit. Stable performance of the algorithm in "easy" and "difficult" test images may indicate an advantage in macroscopically challenging cases.}, language = {en} } @article{RoemmeleMendelBarrettetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Barrett, Caroline and Kiesl, Hans and Rauber, David and R{\"u}ckert, Tobias and Kraus, Lisa and Heinkele, Jakob and Dhillon, Christine and Grosser, Bianca and Prinz, Friederike and Wanzl, Julia and Fleischmann, Carola and Nagl, Sandra and Schnoy, Elisabeth and Schlottmann, Jakob and Dellon, Evan S. and Messmann, Helmut and Palm, Christoph and Ebigbo, Alanna}, title = {An artificial intelligence algorithm is highly accurate for detecting endoscopic features of eosinophilic esophagitis}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Nature Portfolio}, address = {London}, doi = {10.1038/s41598-022-14605-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-46928}, pages = {10}, abstract = {The endoscopic features associated with eosinophilic esophagitis (EoE) may be missed during routine endoscopy. We aimed to develop and evaluate an Artificial Intelligence (AI) algorithm for detecting and quantifying the endoscopic features of EoE in white light images, supplemented by the EoE Endoscopic Reference Score (EREFS). An AI algorithm (AI-EoE) was constructed and trained to differentiate between EoE and normal esophagus using endoscopic white light images extracted from the database of the University Hospital Augsburg. In addition to binary classification, a second algorithm was trained with specific auxiliary branches for each EREFS feature (AI-EoE-EREFS). The AI algorithms were evaluated on an external data set from the University of North Carolina, Chapel Hill (UNC), and compared with the performance of human endoscopists with varying levels of experience. The overall sensitivity, specificity, and accuracy of AI-EoE were 0.93 for all measures, while the AUC was 0.986. With additional auxiliary branches for the EREFS categories, the AI algorithm (AI-EoEEREFS) performance improved to 0.96, 0.94, 0.95, and 0.992 for sensitivity, specificity, accuracy, and AUC, respectively. AI-EoE and AI-EoE-EREFS performed significantly better than endoscopy beginners and senior fellows on the same set of images. An AI algorithm can be trained to detect and quantify endoscopic features of EoE with excellent performance scores. The addition of the EREFS criteria improved the performance of the AI algorithm, which performed significantly better than endoscopists with a lower or medium experience level.}, language = {en} } @misc{RoemmeleMendelRauberetal., author = {R{\"o}mmele, Christoph and Mendel, Robert and Rauber, David and R{\"u}ckert, Tobias and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Endoscopic Diagnosis of Eosinophilic Esophagitis Using a deep Learning Algorithm}, series = {Endoscopy}, volume = {53}, journal = {Endoscopy}, number = {S 01}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0041-1724274}, abstract = {Aims Eosinophilic esophagitis (EoE) is easily missed during endoscopy, either because physicians are not familiar with its endoscopic features or the morphologic changes are too subtle. In this preliminary paper, we present the first attempt to detect EoE in endoscopic white light (WL) images using a deep learning network (EoE-AI). Methods 401 WL images of eosinophilic esophagitis and 871 WL images of normal esophageal mucosa were evaluated. All images were assessed for the Endoscopic Reference score (EREFS) (edema, rings, exudates, furrows, strictures). Images with strictures were excluded. EoE was defined as the presence of at least 15 eosinophils per high power field on biopsy. A convolutional neural network based on the ResNet architecture with several five-fold cross-validation runs was used. Adding auxiliary EREFS-classification branches to the neural network allowed the inclusion of the scores as optimization criteria during training. EoE-AI was evaluated for sensitivity, specificity, and F1-score. In addition, two human endoscopists evaluated the images. Results EoE-AI showed a mean sensitivity, specificity, and F1 of 0.759, 0.976, and 0.834 respectively, averaged over the five distinct cross-validation runs. With the EREFS-augmented architecture, a mean sensitivity, specificity, and F1-score of 0.848, 0.945, and 0.861 could be demonstrated respectively. In comparison, the two human endoscopists had an average sensitivity, specificity, and F1-score of 0.718, 0.958, and 0.793. Conclusions To the best of our knowledge, this is the first application of deep learning to endoscopic images of EoE which were also assessed after augmentation with the EREFS-score. The next step is the evaluation of EoE-AI using an external dataset. We then plan to assess the EoE-AI tool on endoscopic videos, and also in real-time. This preliminary work is encouraging regarding the ability for AI to enhance physician detection of EoE, and potentially to do a true "optical biopsy" but more work is needed.}, language = {en} } @misc{MeinikheimMendelProbstetal., author = {Meinikheim, Michael and Mendel, Robert and Probst, Andreas and Scheppach, Markus W. and Schnoy, Elisabeth and Nagl, Sandra and R{\"o}mmele, Christoph and Prinz, Friederike and Schlottmann, Jakob and Golger, Daniela and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {AI-assisted detection and characterization of early Barrett's neoplasia: Results of an Interim analysis}, series = {Endoscopy}, volume = {55}, journal = {Endoscopy}, number = {S02}, publisher = {Thieme}, doi = {10.1055/s-0043-1765437}, pages = {S169}, abstract = {Aims Evaluation of the add-on effect an artificial intelligence (AI) based clinical decision support system has on the performance of endoscopists with different degrees of expertise in the field of Barrett's esophagus (BE) and Barrett's esophagus-related neoplasia (BERN). Methods The support system is based on a multi-task deep learning model trained to solve a segmentation and several classification tasks. The training approach represents an extension of the ECMT semi-supervised learning algorithm. The complete system evaluates a decision tree between estimated motion, classification, segmentation, and temporal constraints, to decide when and how the prediction is highlighted to the observer. In our current study, ninety-six video cases of patients with BE and BERN were prospectively collected and assessed by Barrett's specialists and non-specialists. All video cases were evaluated twice - with and without AI assistance. The order of appearance, either with or without AI support, was assigned randomly. Participants were asked to detect and characterize regions of dysplasia or early neoplasia within the video sequences. Results Standalone sensitivity, specificity, and accuracy of the AI system were 92.16\%, 68.89\%, and 81.25\%, respectively. Mean sensitivity, specificity, and accuracy of expert endoscopists without AI support were 83,33\%, 58,20\%, and 71,48 \%, respectively. Gastroenterologists without Barrett's expertise but with AI support had a comparable performance with a mean sensitivity, specificity, and accuracy of 76,63\%, 65,35\%, and 71,36\%, respectively. Conclusions Non-Barrett's experts with AI support had a similar performance as experts in a video-based study.}, language = {en} } @article{MeinikheimMendelPalmetal., author = {Meinikheim, Michael and Mendel, Robert and Palm, Christoph and Probst, Andreas and Muzalyova, Anna and Scheppach, Markus W. and Nagl, Sandra and Schnoy, Elisabeth and R{\"o}mmele, Christoph and Schulz, Dominik A. H. and Schlottmann, Jakob and Prinz, Friederike and Rauber, David and Rueckert, Tobias and Matsumura, Tomoaki and Fern{\´a}ndez-Esparrach, Gl{\`o}ria and Parsa, Nasim and Byrne, Michael F. and Messmann, Helmut and Ebigbo, Alanna}, title = {Influence of artificial intelligence on the diagnostic performance of endoscopists in the assessment of Barrett's esophagus: a tandem randomized and video trial}, series = {Endoscopy}, journal = {Endoscopy}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/a-2296-5696}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-72818}, pages = {9}, abstract = {Background This study evaluated the effect of an artificial intelligence (AI)-based clinical decision support system on the performance and diagnostic confidence of endoscopists in their assessment of Barrett's esophagus (BE). Methods 96 standardized endoscopy videos were assessed by 22 endoscopists with varying degrees of BE experience from 12 centers. Assessment was randomized into two video sets: group A (review first without AI and second with AI) and group B (review first with AI and second without AI). Endoscopists were required to evaluate each video for the presence of Barrett's esophagus-related neoplasia (BERN) and then decide on a spot for a targeted biopsy. After the second assessment, they were allowed to change their clinical decision and confidence level. Results AI had a stand-alone sensitivity, specificity, and accuracy of 92.2\%, 68.9\%, and 81.3\%, respectively. Without AI, BE experts had an overall sensitivity, specificity, and accuracy of 83.3\%, 58.1\%, and 71.5\%, respectively. With AI, BE nonexperts showed a significant improvement in sensitivity and specificity when videos were assessed a second time with AI (sensitivity 69.8\% [95\%CI 65.2\%-74.2\%] to 78.0\% [95\%CI 74.0\%-82.0\%]; specificity 67.3\% [95\%CI 62.5\%-72.2\%] to 72.7\% [95\%CI 68.2\%-77.3\%]). In addition, the diagnostic confidence of BE nonexperts improved significantly with AI. Conclusion BE nonexperts benefitted significantly from additional AI. BE experts and nonexperts remained significantly below the stand-alone performance of AI, suggesting that there may be other factors influencing endoscopists' decisions to follow or discard AI advice.}, language = {en} } @misc{ScheppachWeberNunesArizietal., author = {Scheppach, Markus W. and Weber Nunes, Danilo and Arizi, X. and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Procedural phase recognition in endoscopic submucosal dissection (ESD) using artificial intelligence (AI)}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783804}, pages = {S439}, abstract = {Aims Recent evidence suggests the possibility of intraprocedural phase recognition in surgical operations as well as endoscopic interventions such as peroral endoscopic myotomy and endoscopic submucosal dissection (ESD) by AI-algorithms. The intricate measurement of intraprocedural phase distribution may deepen the understanding of the procedure. Furthermore, real-time quality assessment as well as automation of reporting may become possible. Therefore, we aimed to develop an AI-algorithm for intraprocedural phase recognition during ESD. Methods A training dataset of 364385 single images from 9 full-length ESD videos was compiled. Each frame was classified into one procedural phase. Phases included scope manipulation, marking, injection, application of electrical current and bleeding. Allocation of each frame was only possible to one category. This training dataset was used to train a Video Swin transformer to recognize the phases. Temporal information was included via logarithmic frame sampling. Validation was performed using two separate ESD videos with 29801 single frames. Results The validation yielded sensitivities of 97.81\%, 97.83\%, 95.53\%, 85.01\% and 87.55\% for scope manipulation, marking, injection, electric application and bleeding, respectively. Specificities of 77.78\%, 90.91\%, 95.91\%, 93.65\% and 84.76\% were measured for the same parameters. Conclusions The developed algorithm was able to classify full-length ESD videos on a frame-by-frame basis into the predefined classes with high sensitivities and specificities. Future research will aim at the development of quality metrics based on single-operator phase distribution.}, language = {en} } @misc{EbigboRauberAyoubetal., author = {Ebigbo, Alanna and Rauber, David and Ayoub, Mousa and Birzle, Lisa and Matsumura, Tomoaki and Probst, Andreas and Steinbr{\"u}ck, Ingo and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Scheppach, Markus W. and Palm, Christoph and Messmann, Helmut}, title = {Early Esophageal Cancer and the Generalizability of Artificial Intelligence}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783775}, pages = {S428}, abstract = {Aims Artificial Intelligence (AI) systems in gastrointestinal endoscopy are narrow because they are trained to solve only one specific task. Unlike Narrow-AI, general AI systems may be able to solve multiple and unrelated tasks. We aimed to understand whether an AI system trained to detect, characterize, and segment early Barrett's neoplasia (Barrett's AI) is only capable of detecting this pathology or can also detect and segment other diseases like early squamous cell cancer (SCC). Methods 120 white light (WL) and narrow-band endoscopic images (NBI) from 60 patients (1 WL and 1 NBI image per patient) were extracted from the endoscopic database of the University Hospital Augsburg. Images were annotated by three expert endoscopists with extensive experience in the diagnosis and endoscopic resection of early esophageal neoplasias. An AI system based on DeepLabV3+architecture dedicated to early Barrett's neoplasia was tested on these images. The AI system was neither trained with SCC images nor had it seen the test images prior to evaluation. The overlap between the three expert annotations („expert-agreement") was the ground truth for evaluating AI performance. Results Barrett's AI detected early SCC with a mean intersection over reference (IoR) of 92\% when at least 1 pixel of the AI prediction overlapped with the expert-agreement. When the threshold was increased to 5\%, 10\%, and 20\% overlap with the expert-agreement, the IoR was 88\%, 85\% and 82\%, respectively. The mean Intersection Over Union (IoU) - a metric according to segmentation quality between the AI prediction and the expert-agreement - was 0.45. The mean expert IoU as a measure of agreement between the three experts was 0.60. Conclusions In the context of this pilot study, the predictions of SCC by a Barrett's dedicated AI showed some overlap to the expert-agreement. Therefore, features learned from Barrett's cancer-related training might be helpful also for SCC prediction. Our results allow different possible explanations. On the one hand, some Barrett's cancer features generalize toward the related task of assessing early SCC. On the other hand, the Barrett's AI is less specific to Barrett's cancer than a general predictor of pathological tissue. However, we expect to enhance the detection quality significantly by extending the training to SCC-specific data. The insight of this study opens the way towards a transfer learning approach for more efficient training of AI to solve tasks in other domains.}, language = {en} } @misc{ScheppachMendelRauberetal., author = {Scheppach, Markus W. and Mendel, Robert and Rauber, David and Probst, Andreas and Nagl, Sandra and R{\"o}mmele, Christoph and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial Intelligence (AI) improves endoscopists' vessel detection during endoscopic submucosal dissection (ESD)}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1782891}, pages = {S93}, abstract = {Aims While AI has been successfully implemented in detecting and characterizing colonic polyps, its role in therapeutic endoscopy remains to be elucidated. Especially third space endoscopy procedures like ESD and peroral endoscopic myotomy (POEM) pose a technical challenge and the risk of operator-dependent complications like intraprocedural bleeding and perforation. Therefore, we aimed at developing an AI-algorithm for intraprocedural real time vessel detection during ESD and POEM. Methods A training dataset consisting of 5470 annotated still images from 59 full-length videos (47 ESD, 12 POEM) and 179681 unlabeled images was used to train a DeepLabV3+neural network with the ECMT semi-supervised learning method. Evaluation for vessel detection rate (VDR) and time (VDT) of 19 endoscopists with and without AI-support was performed using a testing dataset of 101 standardized video clips with 200 predefined blood vessels. Endoscopists were stratified into trainees and experts in third space endoscopy. Results The AI algorithm had a mean VDR of 93.5\% and a median VDT of 0.32 seconds. AI support was associated with a statistically significant increase in VDR from 54.9\% to 73.0\% and from 59.0\% to 74.1\% for trainees and experts, respectively. VDT significantly decreased from 7.21 sec to 5.09 sec for trainees and from 6.10 sec to 5.38 sec for experts in the AI-support group. False positive (FP) readings occurred in 4.5\% of frames. FP structures were detected significantly shorter than true positives (0.71 sec vs. 5.99 sec). Conclusions AI improved VDR and VDT of trainees and experts in third space endoscopy and may reduce performance variability during training. Further research is needed to evaluate the clinical impact of this new technology.}, language = {en} } @misc{ZellmerRauberProbstetal., author = {Zellmer, Stephan and Rauber, David and Probst, Andreas and Weber, Tobias and Braun, Georg and R{\"o}mmele, Christoph and Nagl, Sandra and Schnoy, Elisabeth and Messmann, Helmut and Ebigbo, Alanna and Palm, Christoph}, title = {Artificial intelligence as a tool in the detection of the papillary ostium during ERCP}, series = {Endoscopy}, volume = {56}, journal = {Endoscopy}, number = {S 02}, publisher = {Thieme}, address = {Stuttgart}, doi = {10.1055/s-0044-1783138}, pages = {S198}, abstract = {Aims Endoscopic retrograde cholangiopancreaticography (ERCP) is the gold standard in the diagnosis as well as treatment of diseases of the pancreatobiliary tract. However, it is technically complex and has a relatively high complication rate. In particular, cannulation of the papillary ostium remains challenging. The aim of this study is to examine whether a deep-learning algorithm can be used to detect the major duodenal papilla and in particular the papillary ostium reliably and could therefore be a valuable tool for inexperienced endoscopists, particularly in training situation. Methods We analyzed a total of 654 retrospectively collected images of 85 patients. Both the major duodenal papilla and the ostium were then segmented. Afterwards, a neural network was trained using a deep-learning algorithm. A 5-fold cross-validation was performed. Subsequently, we ran the algorithm on 5 prospectively collected videos of ERCPs. Results 5-fold cross-validation on the 654 labeled data resulted in an F1 value of 0.8007, a sensitivity of 0.8409 and a specificity of 0.9757 for the class papilla, and an F1 value of 0.5724, a sensitivity of 0.5456 and a specificity of 0.9966 for the class ostium. Regardless of the class, the average F1 value (class papilla and class ostium) was 0.6866, the sensitivity 0.6933 and the specificity 0.9861. In 100\% of cases the AI-detected localization of the papillary ostium in the prospectively collected videos corresponded to the localization of the cannulation performed by the endoscopist. Conclusions In the present study, the neural network was able to identify the major duodenal papilla with a high sensitivity and high specificity. In detecting the papillary ostium, the sensitivity was notably lower. However, when used on videos, the AI was able to identify the location of the subsequent cannulation with 100\% accuracy. In the future, the neural network will be trained with more data. Thus, a suitable tool for ERCP could be established, especially in the training situation.}, language = {en} } @article{EbigboMendelScheppachetal., author = {Ebigbo, Alanna and Mendel, Robert and Scheppach, Markus W. and Probst, Andreas and Shahidi, Neal and Prinz, Friederike and Fleischmann, Carola and R{\"o}mmele, Christoph and G{\"o}lder, Stefan Karl and Braun, Georg and Rauber, David and R{\"u}ckert, Tobias and Souza Jr., Luis Antonio de and Papa, Jo{\~a}o Paulo and Byrne, Michael F. and Palm, Christoph and Messmann, Helmut}, title = {Vessel and tissue recognition during third-space endoscopy using a deep learning algorithm}, series = {Gut}, volume = {71}, journal = {Gut}, number = {12}, publisher = {BMJ}, address = {London}, doi = {10.1136/gutjnl-2021-326470}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-54293}, pages = {2388 -- 2390}, abstract = {In this study, we aimed to develop an artificial intelligence clinical decision support solution to mitigate operator-dependent limitations during complex endoscopic procedures such as endoscopic submucosal dissection and peroral endoscopic myotomy, for example, bleeding and perforation. A DeepLabv3-based model was trained to delineate vessels, tissue structures and instruments on endoscopic still images from such procedures. The mean cross-validated Intersection over Union and Dice Score were 63\% and 76\%, respectively. Applied to standardised video clips from third-space endoscopic procedures, the algorithm showed a mean vessel detection rate of 85\% with a false-positive rate of 0.75/min. These performance statistics suggest a potential clinical benefit for procedure safety, time and also training.}, language = {en} } @article{MaierWeihererHuberetal., author = {Maier, Johannes and Weiherer, Maximilian and Huber, Michaela and Palm, Christoph}, title = {Imitating human soft tissue on basis of a dual-material 3D print using a support-filled metamaterial to provide bimanual haptic for a hand surgery training system}, series = {Quantitative Imaging in Medicine and Surgery}, volume = {9}, journal = {Quantitative Imaging in Medicine and Surgery}, number = {1}, publisher = {AME Publishing Company}, doi = {10.21037/qims.2018.09.17}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-979}, pages = {30 -- 42}, abstract = {Background: Currently, it is common practice to use three-dimensional (3D) printers not only for rapid prototyping in the industry, but also in the medical area to create medical applications for training inexperienced surgeons. In a clinical training simulator for minimally invasive bone drilling to fix hand fractures with Kirschner-wires (K-wires), a 3D-printed hand phantom must not only be geometrically but also haptically correct. Due to a limited view during an operation, surgeons need to perfectly localize underlying risk structures only by feeling of specific bony protrusions of the human hand. Methods: The goal of this experiment is to imitate human soft tissue with its haptic and elasticity for a realistic hand phantom fabrication, using only a dual-material 3D printer and support-material-filled metamaterial between skin and bone. We present our workflow to generate lattice structures between hard bone and soft skin with iterative cube edge (CE) or cube face (CF) unit cells. Cuboid and finger shaped sample prints with and without inner hard bone in different lattice thickness are constructed and 3D printed. Results: The most elastic available rubber-like material is too firm to imitate soft tissue. By reducing the amount of rubber in the inner volume through support material (SUP), objects become significantly softer. Without metamaterial, after disintegration, the SUP can be shifted through the volume and thus the body loses its original shape. Although the CE design increases the elasticity, it cannot restore the fabric form. In contrast to CE, the CF design increases not only the elasticity but also guarantees a local limitation of the SUP. Therefore, the body retains its shape and internal bones remain in its intended place. Various unit cell sizes, lattice thickening and skin thickness regulate the rubber material and SUP ratio. Test prints with higher SUP and lower rubber material percentage appear softer and vice versa. This was confirmed by an expert surgeon evaluation. Subjects adjudged pure rubber-like material as too firm and samples only filled with SUP or lattice structure in CE design as not suitable for imitating tissue. 3D-printed finger samples in CF design were rated as realistic compared to the haptic of human tissue with a good palpable bone structure. Conclusions: We developed a new dual-material 3D print technique to imitate soft tissue of the human hand with its haptic properties. Blowy SUP is trapped within a lattice structure to soften rubber-like 3D print material, which makes it possible to reproduce a realistic replica of human hand soft tissue.}, subject = {Handchirurgie}, language = {en} } @inproceedings{WeberNunesHammerHammeretal., author = {Weber Nunes, Danilo and Hammer, Michael and Hammer, Simone and Uller, Wibke and Palm, Christoph}, title = {Classification of Vascular Malformations Based on T2 STIR Magnetic Resonance Imaging}, series = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2022: Proceedings, German Workshop on Medical Image Computing, Heidelberg, June 26-28, 2022}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-36932-3_57}, pages = {267 -- 272}, abstract = {Vascular malformations (VMs) are a rare condition. They can be categorized into high-flow and low-flow VMs, which is a challenging task for radiologists. In this work, a very heterogeneous set of MRI images with only rough annotations are used for classification with a convolutional neural network. The main focus is to describe the challenging data set and strategies to deal with such data in terms of preprocessing, annotation usage and choice of the network architecture. We achieved a classification result of 89.47 \% F1-score with a 3D ResNet 18.}, language = {en} } @article{DesernoHandelsMaierHeinetal., author = {Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Mersmann, Sven and Palm, Christoph and Tolxdorff, Thomas and Wagenknecht, Gudrun and Wittenberg, Thomas}, title = {Viewpoints on Medical Image Processing}, series = {Current Medical Imaging Reviews}, volume = {9}, journal = {Current Medical Imaging Reviews}, number = {2}, doi = {10.2174/1573405611309020002}, pages = {79 -- 88}, abstract = {Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.}, subject = {Bildgebendes Verfahren}, language = {en} } @article{HartmannWeihererSchiltzetal., author = {Hartmann, Robin and Weiherer, Maximilian and Schiltz, Daniel and Seitz, Stephan and Lotter, Luisa and Anker, Alexandra and Palm, Christoph and Prantl, Lukas and Br{\´e}bant, Vanessa}, title = {A Novel Method of Outcome Assessment in Breast Reconstruction Surgery: Comparison of Autologous and Alloplastic Techniques Using Three-Dimensional Surface Imaging}, series = {Aesthetic Plastic Surgery}, volume = {44}, journal = {Aesthetic Plastic Surgery}, publisher = {Springer}, address = {Heidelberg}, doi = {10.1007/s00266-020-01749-4}, pages = {1980 -- 1987}, abstract = {Background Breast reconstruction is an important coping tool for patients undergoing a mastectomy. There are numerous surgical techniques in breast reconstruction surgery (BRS). Regardless of the technique used, creating a symmetric outcome is crucial for patients and plastic surgeons. Three-dimensional surface imaging enables surgeons and patients to assess the outcome's symmetry in BRS. To discriminate between autologous and alloplastic techniques, we analyzed both techniques using objective optical computerized symmetry analysis. Software was developed that enables clinicians to assess optical breast symmetry using three-dimensional surface imaging. Methods Twenty-seven patients who had undergone autologous (n = 12) or alloplastic (n = 15) BRS received three-dimensional surface imaging. Anthropomorphic data were collected digitally using semiautomatic measurements and automatic measurements. Automatic measurements were taken using the newly developed software. To quantify symmetry, a Symmetry Index is proposed. Results Statistical analysis revealed that there is no dif- ference in the outcome symmetry between the two groups (t test for independent samples; p = 0.48, two-tailed). Conclusion This study's findings provide a foundation for qualitative symmetry assessment in BRS using automatized digital anthropometry. In the present trial, no difference in the outcomes' optical symmetry was detected between autologous and alloplastic approaches.}, subject = {Mammoplastik}, language = {en} } @inproceedings{WeberDoenitzBrawanskietal., author = {Weber, Joachim and Doenitz, Christian and Brawanski, Alexander and Palm, Christoph}, title = {Data-Parallel MRI Brain Segmentation in Clinicial Use}, series = {Bildverarbeitung f{\"u}r die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2015 in L{\"u}beck}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2015; Algorithmen - Systeme - Anwendungen; Proceedings des Workshops vom 15. bis 17. M{\"a}rz 2015 in L{\"u}beck}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-662-46224-9_67}, pages = {389 -- 394}, abstract = {Structural MRI brain analysis and segmentation is a crucial part in the daily routine in neurosurgery for intervention planning. Exemplarily, the free software FSL-FAST (FMRIB's Segmentation Library - FMRIB's Automated Segmentation Tool) in version 4 is used for segmentation of brain tissue types. To speed up the segmentation procedure by parallel execution, we transferred FSL-FAST to a General Purpose Graphics Processing Unit (GPGPU) using Open Computing Language (OpenCL) [1]. The necessary steps for parallelization resulted in substantially different and less useful results. Therefore, the underlying methods were revised and adapted yielding computational overhead. Nevertheless, we achieved a speed-up factor of 3.59 from CPU to GPGPU execution, as well providing similar useful or even better results.}, subject = {Kernspintomografie}, language = {en} } @article{MaierPerretSimonetal., author = {Maier, Johannes and Perret, Jerome and Simon, Martina and Schmitt-R{\"u}th, Stephanie and Wittenberg, Thomas and Palm, Christoph}, title = {Force-feedback assisted and virtual fixtures based K-wire drilling simulation}, series = {Computers in Biology and Medicine}, volume = {114}, journal = {Computers in Biology and Medicine}, publisher = {Elsevier}, doi = {10.1016/j.compbiomed.2019.103473}, pages = {1 -- 10}, abstract = {One common method to fix fractures of the human hand after an accident is an osteosynthesis with Kirschner wires (K-wires) to stabilize the bone fragments. The insertion of K-wires is a delicate minimally invasive surgery, because surgeons operate almost without a sight. Since realistic training methods are time consuming, costly and insufficient, a virtual-reality (VR) based training system for the placement of K-wires was developed. As part of this, the current work deals with the real-time bone drilling simulation using a haptic force-feedback device. To simulate the drilling, we introduce a virtual fixture based force-feedback drilling approach. By decomposition of the drilling task into individual phases, each phase can be handled individually to perfectly control the drilling procedure. We report about the related finite state machine (FSM), describe the haptic feedback of each state and explain, how to avoid jerking of the haptic force-feedback during state transition. The usage of the virtual fixture approach results in a good haptic performance and a stable drilling behavior. This was confirmed by 26 expert surgeons, who evaluated the virtual drilling on the simulator and rated it as very realistic. To make the system even more convincing, we determined real drilling feed rates through experimental pig bone drilling and transferred them to our system. Due to a constant simulation thread we can guarantee a precise drilling motion. Virtual fixtures based force-feedback calculation is able to simulate force-feedback assisted bone drilling with high quality and, thus, will have a great potential in developing medical applications.}, subject = {Handchirurgie}, language = {en} } @inproceedings{MiddelPalmErdt, author = {Middel, Luise and Palm, Christoph and Erdt, Marius}, title = {Synthesis of Medical Images Using GANs}, series = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, booktitle = {Uncertainty for safe utilization of machine learning in medical imaging and clinical image-based procedures. First International Workshop, UNSURE 2019, and 8th International Workshop, CLIP 2019, held in conjunction with MICCAI 2019, Shenzhen, China, October 17, 2019}, publisher = {Springer Nature}, address = {Cham}, isbn = {978-3-030-32688-3}, issn = {0302-9743}, doi = {10.1007/978-3-030-32689-0_13}, pages = {125 -- 134}, abstract = {The success of artificial intelligence in medicine is based on the need for large amounts of high quality training data. Sharing of medical image data, however, is often restricted by laws such as doctor-patient confidentiality. Although there are publicly available medical datasets, their quality and quantity are often low. Moreover, datasets are often imbalanced and only represent a fraction of the images generated in hospitals or clinics and can thus usually only be used as training data for specific problems. The introduction of generative adversarial networks (GANs) provides a mean to generate artificial images by training two convolutional networks. This paper proposes a method which uses GANs trained on medical images in order to generate a large number of artificial images that could be used to train other artificial intelligence algorithms. This work is a first step towards alleviating data privacy concerns and being able to publicly share data that still contains a substantial amount of the information in the original private data. The method has been evaluated on several public datasets and quantitative and qualitative tests showing promising results.}, subject = {Neuronale Netze}, language = {en} } @inproceedings{FranzDreherPrinzenetal., author = {Franz, Daniela and Dreher, Maria and Prinzen, Martin and Teßmann, Matthias and Palm, Christoph and Katzky, Uwe and Perret, Jerome and Hofer, Mathias and Wittenberg, Thomas}, title = {CT-basiertes virtuelles Fr{\"a}sen am Felsenbein}, series = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2018; Algorithmen - Systeme - Anwendungen. Proceedings des Workshops vom 11. bis 13. M{\"a}rz 2018 in Erlangen}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-662-56537-7}, doi = {10.1007/978-3-662-56537-7_51}, pages = {176 -- 181}, abstract = {Im Rahmen der Entwicklung eines haptisch-visuellen Trainingssystems f{\"u}r das Fr{\"a}sen am Felsenbein werden ein Haptikarm und ein autostereoskopischer 3D-Monitor genutzt, um Chirurgen die virtuelle Manipulation von kn{\"o}chernen Strukturen im Kontext eines sog. Serious Game zu erm{\"o}glichen. Unter anderem sollen Assistenz{\"a}rzte im Rahmen ihrer Ausbildung das Fr{\"a}sen am Felsenbein f{\"u}r das chirurgische Einsetzen eines Cochlea-Implantats {\"u}ben k{\"o}nnen. Die Visualisierung des virtuellen Fr{\"a}sens muss daf{\"u}r in Echtzeit und m{\"o}glichst realistisch modelliert, implementiert und evaluiert werden. Wir verwenden verschiedene Raycasting Methoden mit linearer und Nearest Neighbor Interpolation und vergleichen die visuelle Qualit{\"a}t und die Bildwiederholfrequenzen der Methoden. Alle verglichenen Verfahren sind sind echtzeitf{\"a}hig, unterscheiden sich aber in ihrer visuellen Qualit{\"a}t.}, subject = {Felsenbein}, language = {de} }