@article{MaierDesernoHandelsetal., author = {Maier, Andreas and Deserno, Thomas M. and Handels, Heinz and Maier-Hein, Klaus H. and Palm, Christoph and Tolxdorff, Thomas}, title = {IJCARS: BVM 2021 special issue}, series = {International Journal of Computer Assisted Radiology and Surgery}, volume = {16}, journal = {International Journal of Computer Assisted Radiology and Surgery}, publisher = {Springer}, doi = {10.1007/s11548-021-02534-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-21666}, pages = {2067 -- 2068}, abstract = {The German workshop on medical image computing (BVM) has been held in different locations in Germany for more than 20 years. In terms of content, BVM focused on the computer-aided analysis of medical image data with a wide range of applications, e.g. in the area of imaging, diagnostics, operation planning, computer-aided intervention and visualization. During this time, there have been remarkable methodological developments and upheavals, on which the BVM community has worked intensively. The area of machine learning should be emphasized, which has led to significant improvements, especially for tasks of classification and segmentation, but increasingly also in image formation and registration. As a result, work in connection with deep learning now dominates the BVM. These developments have also contributed to the establishment of medical image processing at the interface between computer science and medicine as one of the key technologies for the digitization of the health system. In addition to the presentation of current research results, a central aspect of the BVM is primarily the promotion of young scientists from the diverse BVM community, covering not only Germany but also Austria, Switzerland, The Netherland and other European neighbors. The conference serves primarily doctoral students and postdocs, but also students with excellent bachelor and master theses as a platform to present their work, to enter into professional discourse with the community, and to establish networks with specialist colleagues. Despite the many conferences and congresses that are also relevant for medical image processing, the BVM has therefore lost none of its importance and attractiveness and has retained its permanent place in the annual conference rhythm. Building on this foundation, there are some innovations and changes this year. The BVM 2021 was organized for the first time at the Ostbayerische Technische Hochschule Regensburg (OTH Regensburg, a technical university of applied sciences). After Aachen, Berlin, Erlangen, Freiburg, Hamburg, Heidelberg, Leipzig, L{\"u}beck, and Munich, Regensburg is not just a new venue. OTH Regensburg is the first representative of the universities of applied sciences (HAW) to organize the conference, which differs to universities, university hospitals, or research centers like Fraunhofer or Helmholtz. This also considers the further development of the research landscape in Germany, where HAWs increasingly contribute to applied research in addition to their focus on teaching. This development is also reflected in the contributions submitted to the BVM in recent years. At BVM 2021, which was held in a virtual format for the first time due to the Corona pandemic, an attractive and high-quality program was offered. Fortunately, the number of submissions increased significantly. Out of 97 submissions, 26 presentations, 51 posters and 5 software demonstrations were accepted via an anonymized reviewing process with three reviews each. The three best works have been awarded BVM prizes, selected by a separate committee. Based on these high-quality submissions, we are able to present another special issue in the International Journal of Computer Assisted Radiology and Surgery (IJCARS). Out of the 97 submissions, the ones with the highest scores have been invited to submit an extended version of their paper to be presented in IJCARS. As a result, we are now able to present this special issue with seven excellent articles. Many submissions focus on machine learning in a medical context.}, subject = {Bildgebendes Verfahren}, language = {en} } @inproceedings{PietrzykPalmBeyer, author = {Pietrzyk, Uwe and Palm, Christoph and Beyer, Thomas}, title = {Fusion strategies in multi-modality imaging}, series = {Medical Physics, Vol 2. Proceedings of the jointly held Congresses: ICMP 2005, 14th International Conference of Medical Physics of the International Organization for Medical Physics (IOMP), the European Federation of Organizations in Medical Physics (EFOMP) and the German Society of Medical Physics (DGMP) ; BMT 2005, 39th Annual Congress of the German Society for Biomedical Engineering (DGBMT) within VDE ; 14th - 17th September 2005, Nuremberg, Germany}, booktitle = {Medical Physics, Vol 2. Proceedings of the jointly held Congresses: ICMP 2005, 14th International Conference of Medical Physics of the International Organization for Medical Physics (IOMP), the European Federation of Organizations in Medical Physics (EFOMP) and the German Society of Medical Physics (DGMP) ; BMT 2005, 39th Annual Congress of the German Society for Biomedical Engineering (DGBMT) within VDE ; 14th - 17th September 2005, Nuremberg, Germany}, pages = {1446 -- 1447}, subject = {Bildgebendes Verfahren}, language = {en} } @article{PalmVietenSalberetal., author = {Palm, Christoph and Vieten, Andrea and Salber, Dagmar and Pietrzyk, Uwe}, title = {Evaluation of Registration Strategies for Multi-modality Images of Rat Brain Slices}, series = {Physics in Medicine and Biology}, volume = {54}, journal = {Physics in Medicine and Biology}, number = {10}, doi = {10.1088/0031-9155/54/10/021}, pages = {3269 -- 3289}, abstract = {In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.}, subject = {Histologie}, language = {en} } @inproceedings{EibenPalmPietrzyketal., author = {Eiben, Bj{\"o}rn and Palm, Christoph and Pietrzyk, Uwe and Davatzikos, Christos and Amunts, Katrin}, title = {Error Correction using Registration for Blockface Volume Reconstruction of Serial Histological Sections of the Human Brain}, series = {Bildverarbeitung f{\"u}r die Medizin 2010; Algorithmen - Systeme - Anwendungen ; Proceedings des Workshops vom 22. bis 25. M{\"a}rz 2009 in Heidelberg}, booktitle = {Bildverarbeitung f{\"u}r die Medizin 2010; Algorithmen - Systeme - Anwendungen ; Proceedings des Workshops vom 22. bis 25. M{\"a}rz 2009 in Heidelberg}, publisher = {Springer}, address = {Berlin}, pages = {301 -- 305}, abstract = {For accurate registration of histological sections blockface images are frequently used as three dimensional reference. However, due to the use of endocentric lenses the images suffer from perspective errors such as scaling and seemingly relative movement of planes which are located in different distances parallel to the imaging sensor. The suggested correction of those errors is based on the estimation of scaling factors derived from image registration of regions characterized by differing distances to the point of view in neighboring sections. The correction allows the generation of a consistent three dimensional blockface volume.}, subject = {Histologie}, language = {en} } @article{HuttererHattingenPalmetal., author = {Hutterer, Markus and Hattingen, Elke and Palm, Christoph and Proescholdt, Martin Andreas and Hau, Peter}, title = {Current standards and new concepts in MRI and PET response assessment of antiangiogenic therapies in high-grade glioma patients}, series = {Neuro-Oncology}, volume = {17}, journal = {Neuro-Oncology}, number = {6}, doi = {10.1093/neuonc/nou322}, pages = {784 -- 800}, abstract = {Despite multimodal treatment, the prognosis of high-grade gliomas is grim. As tumor growth is critically dependent on new blood vessel formation, antiangiogenic treatment approaches offer an innovative treatment strategy. Bevacizumab, a humanized monoclonal antibody, has been in the spotlight of antiangiogenic approaches for several years. Currently, MRI including contrast-enhanced T1-weighted and T2/fluid-attenuated inversion recovery (FLAIR) images is routinely used to evaluate antiangiogenic treatment response (Response Assessment in Neuro-Oncology criteria). However, by restoring the blood-brain barrier, bevacizumab may reduce T1 contrast enhancement and T2/FLAIR hyperintensity, thereby obscuring the imaging-based detection of progression. The aim of this review is to highlight the recent role of imaging biomarkers from MR and PET imaging on measurement of disease progression and treatment effectiveness in antiangiogenic therapies. Based on the reviewed studies, multimodal imaging combining standard MRI with new physiological MRI techniques and metabolic PET imaging, in particular amino acid tracers, may have the ability to detect antiangiogenic drug susceptibility or resistance prior to morphological changes. As advances occur in the development of therapies that target specific biochemical or molecular pathways and alter tumor physiology in potentially predictable ways, the validation of physiological and metabolic imaging biomarkers will become increasingly important in the near future.}, subject = {Gliom}, language = {en} } @article{BeckerZoriyMatuschetal., author = {Becker, Johanna Sabine and Zoriy, Miroslav and Matusch, Andreas and Wu, Bei and Salber, Dagmar and Palm, Christoph and Becker, Julia Susanne}, title = {Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)}, series = {Mass Spectrometry Reviews}, volume = {29}, journal = {Mass Spectrometry Reviews}, doi = {10.1002/mas.20239}, pages = {156 -- 175}, abstract = {The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.}, subject = {Bildgebendes Verfahren}, language = {en} } @misc{ScheppachMendelProbstetal., author = {Scheppach, Markus W. and Mendel, Robert and Probst, Andreas and Meinikheim, Michael and Palm, Christoph and Messmann, Helmut and Ebigbo, Alanna}, title = {Artificial Intelligence (AI) - assisted vessel and tissue recognition during third space endoscopy (Smart ESD)}, series = {Zeitschrift f{\"u}r Gastroenterologie}, volume = {60}, journal = {Zeitschrift f{\"u}r Gastroenterologie}, number = {08}, publisher = {Georg Thieme Verlag}, address = {Stuttgart}, doi = {10.1055/s-0042-1755110}, abstract = {Clinical setting Third space procedures such as endoscopic submucosal dissection (ESD) and peroral endoscopic myotomy (POEM) are complex minimally invasive techniques with an elevated risk for operator-dependent adverse events such as bleeding and perforation. This risk arises from accidental dissection into the muscle layer or through submucosal blood vessels as the submucosal cutting plane within the expanding resection site is not always apparent. Deep learning algorithms have shown considerable potential for the detection and characterization of gastrointestinal lesions. So-called AI - clinical decision support solutions (AI-CDSS) are commercially available for polyp detection during colonoscopy. Until now, these computer programs have concentrated on diagnostics whereas an AI-CDSS for interventional endoscopy has not yet been introduced. We aimed to develop an AI-CDSS („Smart ESD") for real-time intra-procedural detection and delineation of blood vessels, tissue structures and endoscopic instruments during third-space endoscopic procedures. Characteristics of Smart ESD An AI-CDSS was invented that delineates blood vessels, tissue structures and endoscopic instruments during third-space endoscopy in real-time. The output can be displayed by an overlay over the endoscopic image with different modes of visualization, such as a color-coded semitransparent area overlay, or border tracing (demonstration video). Hereby the optimal layer for dissection can be visualized, which is close above or directly at the muscle layer, depending on the applied technique (ESD or POEM). Furthermore, relevant blood vessels (thickness> 1mm) are delineated. Spatial proximity between the electrosurgical knife and a blood vessel triggers a warning signal. By this guidance system, inadvertent dissection through blood vessels could be averted. Technical specifications A DeepLabv3+ neural network architecture with KSAC and a 101-layer ResNeSt backbone was used for the development of Smart ESD. It was trained and validated with 2565 annotated still images from 27 full length third-space endoscopic videos. The annotation classes were blood vessel, submucosal layer, muscle layer, electrosurgical knife and endoscopic instrument shaft. A test on a separate data set yielded an intersection over union (IoU) of 68\%, a Dice Score of 80\% and a pixel accuracy of 87\%, demonstrating a high overlap between expert and AI segmentation. Further experiments on standardized video clips showed a mean vessel detection rate (VDR) of 85\% with values of 92\%, 70\% and 95\% for POEM, rectal ESD and esophageal ESD respectively. False positive measurements occurred 0.75 times per minute. 7 out of 9 vessels which caused intraprocedural bleeding were caught by the algorithm, as well as both vessels which required hemostasis via hemostatic forceps. Future perspectives Smart ESD performed well for vessel and tissue detection and delineation on still images, as well as on video clips. During a live demonstration in the endoscopy suite, clinical applicability of the innovation was examined. The lag time for processing of the live endoscopic image was too short to be visually detectable for the interventionist. Even though the algorithm could not be applied during actual dissection by the interventionist, Smart ESD appeared readily deployable during visual assessment by ESD experts. Therefore, we plan to conduct a clinical trial in order to obtain CE-certification of the algorithm. This new technology may improve procedural safety and speed, as well as training of modern minimally invasive endoscopic resection techniques.}, subject = {Bildgebendes Verfahren}, language = {en} }