@inproceedings{SchreinerLangerPrommesbergeretal., author = {Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Mingels, S. and Serbun, Pavel and M{\"u}ller, G{\"u}ntner}, title = {Field emission from surface textured extraction facets of GaN light emitting diodes}, series = {26th International Vacuum Nanoelectronics Conference (IVNC), 8-12 July 2013, Roanoke, VA, USA}, booktitle = {26th International Vacuum Nanoelectronics Conference (IVNC), 8-12 July 2013, Roanoke, VA, USA}, publisher = {IEEE}, doi = {10.1109/ivnc.2013.6624721}, abstract = {We report on the field emission properties of GaN LED surfaces. The textured extraction facet acts both as light scattering layer in order to increase the light extraction efficiency of the LED as well as nanostructured cathode surface for the field emission (FE) of electrons. The LED emits blue light with a peak wavelength of around 450 nm. The FE properties were investigated by a scanning microscope. Integral measurements as well as regulated voltage scans for 1 nA FE current over an area of 400 * 400 µm2were used to investigate both overall and local FE properties. A high number of well-distributed emitters with an average field enhancement factor ß of 85 and stable integral emission currents up to 100 µA at an electric field of   80 V/µm ({\O}anode= 880 µm) were found. Photo-field-emission spectroscopy (PFES) using a tunable pulsed laser revealed an enhanced photo absorption of the InGaN/GaN quantum well structures near the emission wavelength of the LED (<3.5 eV), whereas at high photon energies (>4.1 eV) photoemission from the GaN surface was observed.}, language = {en} } @article{DamsNavitskiPrommesbergeretal., author = {Dams, Florian and Navitski, Aliaksandr and Prommesberger, Christian and Serbun, Pavel and Langer, Christoph and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {Homogeneous Field Emission Cathodes With Precisely Adjustable Geometry Fabricated by Silicon Technology}, series = {IEEE Transactions on Electron Devices}, volume = {59}, journal = {IEEE Transactions on Electron Devices}, number = {10}, publisher = {IEEE}, issn = {0018-9383}, doi = {10.1109/TED.2012.2206598}, pages = {2832 -- 2837}, abstract = {Silicon-based cathodes with precisely aligned field emitter arrays of sharp tips applicable for miniaturized electron sources were successfully fabricated and characterized. This was made possible by an improved fabrication process using wet thermal oxidation, wet etching, and reactive-ion etching steps with adjustable anisotropy. As substrate materials, both p-doped silicon and n-doped silicon were used. The cathode chips contain about 3 × 10 5 Si tips/cm 2 in a triangular array with tip heights of 2.5 μm, tip radii of less than 30 nm, and spacing of 20 μm. Well-aligned field emission (FE) and excellent homogeneity from all tips (i.e., 100\% efficiency) and maximum stable currents of typically 0.1 μA (0.6 μA) for p (n)-type Si were reproducibly achieved. The current-voltage characteristics of the p-Si tips exhibit the expected saturation at around 10 nA with around ten times better current stability, whereas the n-Si tips show the usual Fowler-Nordheim behavior. Additional coating of the Si tips with 5-nm Cr and 10-nm Au layers resulted in improved stability and at least five times higher average FE current limits (about 3 μA) at about 30\% higher operation voltage.}, language = {en} } @inproceedings{BornmannMingelsSerbunetal., author = {Bornmann, Benjamin and Mingels, Stephan and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk and M{\"u}ller, G{\"u}ntner and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Photosensitivity of electron field emission from B-doped Si-tip arrays}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, publisher = {IEEE}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316980}, pages = {1 -- 2}, abstract = {The electron current from field-emitting B-doped Si-tip arrays under illumination was studied. An improved cathode design with a patch of 271 tips yielded a reproducible cathode current between 0.2-2000 nA in the electric field range of 3.8-6.6 V/μm. The plateau in the Fowler-Nordheim plot shows the actual carrier depletion and leads to a very stable emission at ~1 μA with a current noise of less than 3.3 \%. Color-filtered halogen lamp illumination was used to investigate the photo-sensitivity of the saturation current. The intensity-normalized current switching ratio increases nonlinearly with the photon energy. This hints either for secondary generation in the conduction band or deeper valence band excitation. The first is supported by a rough estimation of the quantum efficiency. Further experiments with a tunable laser and electron spectroscopy are planned.}, language = {en} } @inproceedings{LangerPrommesbergerDamsetal., author = {Langer, Christoph and Prommesberger, Christian and Dams, Florian and Schreiner, Rupert}, title = {Theoretical investigations into the field enhancement factor of silicon structures}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.- 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.- 13.07.2012}, publisher = {IEEE}, address = {Piscataway, N.J.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316886}, abstract = {In order to optimize our field-emitting silicon structures, the influence of geometric parameters like aspect ratio, aperture angle and curvature on the field enhancement factor was investigated by finite element simulations. A universal geometric model consisting of a rounded triangle and elliptic curvatures was taken for modeling a variety of different silicon tip as well as ridge structures. Whereas, a high dependency of the field enhancement on the aperture angle was found, the simulations show that the elliptic curvature affects the field enhancement only marginal.}, language = {en} } @inproceedings{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Influence of reactive ion etching parameters on the geometry of silicon tip cathodes for field emission}, series = {Applied Research Conference 2013, ARC 2013 : 17th and 18th October 2013, Deggendorf}, booktitle = {Applied Research Conference 2013, ARC 2013 : 17th and 18th October 2013, Deggendorf}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8440-2274-2}, pages = {67 -- 69}, language = {en} } @inproceedings{SchreinerPrommesbergerLangeretal., author = {Schreiner, Rupert and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Serbun, Pavel and Bornmann, Benjamin and Navitski, Aliaksandr and M{\"u}ller, G{\"u}ntner}, title = {Highly uniform and stable electron field emission from B-doped Si-tip arrays for applications in integrated vacuum microelectronic devices}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.07. - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) - Jeju, Korea (South), 09.07. - 13.07.2012}, publisher = {IEEE}, address = {Piscataway, NJ.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316857}, pages = {1 -- 2}, abstract = {In order to improve the uniformity and field emission stability of p-type silicon tip arrays for pulsed sensor applications, we have systematically studied the influence of the fabrication parameters on the tip shape and the specific operating conditions. Based on detailed design calculations of the field enhancement, we have fabricated a series of hexagonal arrays of B-doped Si-tips in a triangular arrangement, each containing a different number of tips (91, 575 and 1300) of 1 μm height, 20 nm apex radius, and 20 μm pitch. The field emission properties of both individual tips and complete arrays were investigated with by field emission scanning microscopy. The current plateaus of these tips typically occur at about 10 nA and 60 V/μm field level. In this carrier depletion range, single tips provide the highest current stability (<; 4\%) and optical current switching ratios of ~2.5. Rather homogeneous emission of the tip arrays leads to an almost linear scaling of the saturation current (2 nA/tip) and to a much improved current stability (<; 1\%) measured over 1 hour.}, language = {en} } @inproceedings{SerbunNavitskiMuelleretal., author = {Serbun, Pavel and Navitski, Aliaksandr and M{\"u}ller, G{\"u}ntner and Schreiner, Rupert and Prommesberger, Christian and Langer, Christoph and Dams, Florian}, title = {Scaling of the field emission current from B-doped Si-tip arrays}, series = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, booktitle = {25th International Vacuum Nanoelectronics Conference (IVNC) ; Jeju, Korea (South), 09.07.2012 - 13.07.2012}, publisher = {IEEE}, address = {Piscataway, N.J.}, isbn = {978-1-4673-1984-3}, issn = {2380-6311}, doi = {10.1109/IVNC.2012.6316965}, pages = {1 -- 2}, abstract = {We have fabricated a test chip with various hexagonal arrays of B-doped Si tips (height ~ 3 μm, apex radius <; 30 nm, number 1-4447, resistivity 4 Ωcm, 100 orientation) in triangular arrangement (pitch 10 μm, density 1.16×10 6 cm -2 ) in order to systematically investigate the field emission current scaling with the number N of tips. Regulated voltage scans for 1 nA revealed rather efficient emission from nearly all tips of the arrays at an average field of 15 V/μm. The expected current plateau was always obtained at fields around 20 V/μm, but its width strongly increased with N. In this carrier depletion range, the single tip provided a much higher stability (<; 5\%) of the current (2-3 nA) than at lower (>; 50 \%) and higher currents (>; 30\%). Integral current measurements of the hexagonal arrays resulted in a statistically improved current stability (<; 1\%) but only a weak increase of the total current with N 0.28 yet. These results will be discussed with respect to the remaining inhomogeneity of the tips.}, language = {en} } @inproceedings{SerbunPorshynMuelleretal., author = {Serbun, Pavel and Porshyn, V. and M{\"u}ller, G{\"u}nter and L{\"u}tzenkirchen-Hecht, Dirk and Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Field emission behavior of single n- and p-type black Si pillar structures}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520292}, pages = {1-2}, abstract = {We have investigated the properties of single n- and p-type black silicon (b-Si) pillars with a height of 20 μ m under strong electric field and halogen lamp or laser illumination. For both type of b-Si pillar structures, I-V measurements revealed strong activation effects, which consisted in sudden current increases during the first up/down voltage sweeps. The maximum reproducible emission current from a single n-type b-Si pillar structure was about 15 μ A. A pronounced saturation region at 240 nA was observed for a single p-type b-Si pillar. The current fluctuation over time showed a standard deviation of 28\% and 2.5\% for n- and p-type single b-Si pillar structures, respectively. Optical switching under halogen lamp illumination resulted in at least 3 times higher saturation currents and showed a linear dependence of the FE current on the laser power.}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert}, title = {Microrods and microlines by three-dimensional epitaxially grown GaN for field emission cathodes}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051576}, pages = {130 -- 131}, abstract = {The three-dimensional epitaxial technique allows the realization of gallium nitride lines in addition to the rods. To optimize the properties of GaN-based field emission cathodes further investigations and an improvement of the epitaxial process were performed. The microrods and microlines consist of a one-order higher n-doped gallium nitride in comparison to the gallium nitride layer on the sapphire substrate. The typical height of the microrods and -lines is about 5 μm. The field emission properties of these structures were investigated in diode configuration by integral field emission measurements at pressures below 10 -9 mbar. For the microrods (microlines) a voltage of 1100 V (2000 V) was measured for a field emission current of about 0.5 μA with an onset field of about 12 MV/m (24 MV/m). Furthermore, the field enhancement factors for microrods and -lines are in the range of 300 and 200, respectively.}, language = {en} } @inproceedings{SerbunPorshynLuetzenkirchenHechtetal., author = {Serbun, Pavel and Porshyn, V. and L{\"u}tzenkirchen-Hecht, Dirk and Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Photosensitivity of single silicon high-aspect-ratio tips with different doping levels}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520288}, pages = {1-2}, abstract = {Photosensitivity of single lightly p-doped, highly p-doped, with an integrated p/n junction and intrinsic high-aspect-ratio (HAR) silicon tips was investigated in an ultra-high vacuum environment. The current-voltage characteristics (I-V) of the lightly doped p-type HAR tips showed a characteristic current saturation at around 10-12 nA, whereas the HAR Si tips with p/n junction showed similar saturation phenomena, however, at much smaller current values starting at ~20-30 pA. Optical switching under a halogen lamp illumination resulted in at least 2-4 times higher saturation currents and showed a linear dependence between the illumination power and the FE current, for both types of structures. In case of the highly p-doped HAR tips optical current switching effects, i. e. current saturation, were observed at rather low current levels 1-2 pA. Intrinsic HAR Si-tips showed relative unstable field emission behavior without a clear evidence of the photosensitivity.}, language = {en} } @inproceedings{LangerHausladenPrommesbergeretal., author = {Langer, Christoph and Hausladen, Matthias and Prommesberger, Christian and Ławrowski, Robert Damian and Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Shamonin (Chamonine), Mikhail and Schreiner, Rupert}, title = {Field emission current investigation of p-type and metallized silicon emitters in the frequency domain}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520127}, pages = {1-2}, abstract = {We investigated two different field emitter arrays consisting of 10×10 p-type and 10×10 undoped Au-coated high aspect ratio silicon tips. The I-V characterization of the p-type sample showed a pronounced saturation for voltages higher than 500 V and a maximum emission current of 39 nA. The metallized sample revealed a FN-like emission up to several μA. The metallized and the p-type sample operating below the saturation region showed high current fluctuations of ±16\%. Whereas, the metallized sample with current regulation and the p-type sample in the saturation yielded a current stability of ±0.4\% and ±0.3\%, respectively. Investigations in the frequency domain revealed the for field emission typical 1/f-noise. By operating in the saturation region (p-type sample) or using an emission current regulation (metallized sample) the noise level was reduced by at least 20 dB. Finally, the p-type sample was illuminated by a light emitting diode to increase and modulate the emission current in the saturation region. The emission current was increased by a factor of 3.7 to 145 nA. With this configuration we emulated an unstable emission behavior and evaluated the performance of our emission current regulation circuit.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Extraction of the characteristics of limiting elements from field emission measurement data}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551474}, pages = {81 -- 82}, abstract = {In this contribution we will present an algorithm to extract the characteristics of non-Fowler-Nordheim (FN) circuit elements from saturation limited field emission (FE) measurement data. The method for calculating the voltage drop on limiting circuit elements is based on circuit theory as well as Newton's method. Since no assumption on the limiting circuit is made, this method is applicable to any FE data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters are fully taken into account throughout the algorithm. External serial resistors and a limiting p-doped substrate are analyzed, where the latter shows a diode-like behavior.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Control of the electron source current}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051550}, pages = {66 -- 67}, abstract = {A control circuit to stabilize the flux of electrons transmitted through an extractor electrode is presented. By controlling the emission current a fluctuation with a standard deviation of 0.015\% is observed. However, the achievable stability of the transmitted electron current is limited due to a variation of the extraction grid current ratio showing a standard deviation of 4.33\%. By regulating the difference of the emission current and the extraction grid current an improved stability of the transmitted electron current down to a standard deviation of 0.280\% is observed. Even with operation at 2 × 10 -5 mbar a standard deviation of 0.558\% is achieved.}, language = {en} } @inproceedings{PrommesbergerŁawrowskiLangeretal., author = {Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Realisierung von Siliziumspitzenarrays mit integrierter Gate-Elektrode f{\"u}r Anwendungen in der Vakuumsensorik}, series = {4. Landshuter Symposium Mikrosystemtechnik, Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration, Tagungsband zum Symposium 12./13. M{\"a}rz 2014, Hochschule Landshut}, booktitle = {4. Landshuter Symposium Mikrosystemtechnik, Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration, Tagungsband zum Symposium 12./13. M{\"a}rz 2014, Hochschule Landshut}, address = {Landshut}, isbn = {978-3-9812696-5-9}, pages = {36 -- 41}, abstract = {Bei der Feldemission (kalte Emission) k{\"o}nnen Elektronen durch ein starkes elektrisches Feld eine glatte und leitende Oberfl{\"a}che verlassen. Die Elektronen tunneln dabei durch eine Potentialbarriere, deren Breite durch ein {\"a}ußeres elektrisches Feld verkleinert wird. Durch das Hinzuf{\"u}gen einer integrierten Gate-Elektrode um eine Siliziumspitze kann die notwendige Einsatzspannung f{\"u}r Feldemission deutlich gesenkt werden. Zwischen Si-Kathode und Gate-Elektrode befindet sich dabei eine Isolationsschicht, die h{\"o}chste Anforderungen bez{\"u}glich der elektrischen Durchbruchsfestigkeit erf{\"u}llen muss. Mit einer Kombination aus Trocken- (Schichtdicke 50 nm) und Feuchtoxid (Schichtdicke 950 nm) konnte eine Isolationsschicht entwickelt werden, die im integrierten Aufbau eine minimale Durchbruchsfeldst{\"a}rke von 3,2 MV/cm aufweist. F{\"u}r die Realisierung von Siliziumkathoden mit integrierter Gate-Elektrode wurde ein bereits bestehender Herstellungsprozess um zus{\"a}tzliche Prozessschritte erweitert. Die {\"U}bertragung der lateralen Position der Spitze erfolgt durch Strukturierung des Umkehrlacks AZ5214 und einer RIE-{\"A}tzung der zuvor hergestellten SiO2-Schicht. Nach dem Entfernen der Lackschicht wird die vertikale Struktur der Siliziumspitzen durch einen RIE-{\"A}tzprozess mit den Prozessgasen SF6 und O)2 realisiert. Aus einer thermischen Oxidation bei 940 °C resultiert anschließend die Isolationsschicht zwischen Si-Kathode und Gate-Elektrode . Gleichzeitig wird diese Ansch{\"a}rfeoxidation auch zur Realisierung der endg{\"u}ltigen Spitzengeometrie verwendet. Durch die lithographische Strukturierung des Photolacks AZ5214 kann dabei die Fl{\"a}che der aufgedampften Gate-Elektrode festgelegt werden. Die Gate-Elektrode wird in einem selbstjustierenden Prozessschritt exakt konzentrisch um die Si-Spitze aufgedampft. Der gerichtete Aufdampfprozess bewirkt eine Abschattung, so dass das Oxidpl{\"a}ttchen nicht komplett von Metall ummantelt wird. Die Opferschicht aus Photolack wird mit den nicht ben{\"o}tigten Metallfl{\"a}chen in einem Lift-off-Prozess entfernt.}, language = {de} } @inproceedings{PrommesbergerŁawrowskiLangeretal., author = {Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Mecani, Mirgen and Huang, Yifeng and She, Juncong and Schreiner, Rupert}, title = {Field emission properties of ring-shaped Si ridges with DLC coating}, series = {Proc. SPIE 10248, Nanotechnology VIII, 102480H (30 May 2017)}, volume = {102480H}, booktitle = {Proc. SPIE 10248, Nanotechnology VIII, 102480H (30 May 2017)}, editor = {Tiginyanu (Ed.), Ion M.}, publisher = {Society of Photo-Optical Instrumentation Engineers (SPIE)}, doi = {10.1117/12.2265627}, abstract = {We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.}, language = {en} } @inproceedings{ŁawrowskiLangerSchreineretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Sellmair, J.}, title = {Nano Emitters on Silicon Pillar Structures generated by a Focused Electron Beam Induced Deposition}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520059}, pages = {1-2}, abstract = {Nano emitters were deposited by focused electron beam induced deposition of Trimethyl-(methylcyclopentadienyl)platinum(IV) on top of silicon pillars. The nano emitters were exactly positioned in the center on the top of up to four pillars of a quadratic arranged array of sixteen pillars with a pitch of 50 μm. Integral field emission measurements were performed in a diode configuration with a 50 μm mica spacer in a vacuum chamber at pressures of about 10 -9 mbar. The Fowler-Nordheim plots show a linear behavior, like expected for an n-type silicon material and a metal needle. The I-V measurement of the most promising sample shows an integral emission current up to 2 μm at a voltage of 600 V (12 MV/m) and an onset voltage for a current of 1 nA of about 300 V.}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert}, title = {Light emitting diodes based on three-dimensional epitaxial grown crystalline GaN rods}, series = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, booktitle = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, publisher = {VDE-Verlag}, address = {M{\"u}nchen}, isbn = {978-3-8007-4491-6}, pages = {131 -- 134}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert}, title = {Field emission from three-dimensional epitaxial grown GaN-microrods}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551477}, pages = {87 -- 88}, abstract = {A novel three-dimensional epitaxial technique allows on patterned substrates the realization of gallium nitride pillars, also known as nano- and microrods. The typical dimensions of the microrods are in the range of one micron for the radius of the hexagonal footprint and about 10 μm in height. The microrods consist of a semiconductor heterostructure with an n GaN core, a n-GaN shell, a p GaN shell and an intermediate quantum well layer. The field emission properties were investigated in diode configuration by integral field emission measurements in a vacuum chamber at pressures around 10 -9 mbar. The spacer was mica with a thickness of 50 μm. A metallized fine-meshed nitride grid (or a metallized Si-grid) was used as anode. A current of about 1 μA at a voltage of 1250 V (1750 V) was measured. An onset field of about 12.5 MV/m (20 MV/m) and field enhancement factors in the range of 200 to 500 (150 to 300) were found. The investigation with the fine-meshed grid showed an expected pronounced saturation region.}, language = {en} } @inproceedings{PrommesbergerLangerSchreiner, author = {Prommesberger, Christian and Langer, Christoph and Schreiner, Rupert}, title = {Stable and low noise field emission from single p-type Si-tips}, series = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 31st, 2018, Kyoto, Japan}, publisher = {IEEE}, doi = {10.1109/IVNC.2018.8520018}, pages = {1-2}, abstract = {Single gated p-type Si-tips with two different tip radii were fabricated. An emission current of 2.40 μA was measured for the sharp-edged tip at a voltage of 170 V. In contrast, a stable and reproducible emission behavior was observed with an increased tip radius resulting in a pronounced saturation region between 90 V and 150 V, but merely an emission current of 0.55 μA at 150 V. More remarkable is the stable emission behavior with fluctuation of ± 4 \% during a measurement period of 30 minutes. The integral emission current in a homogeneous tip array (16 emitters) showed nearly the same I-V characteristics compared to the single tip and is therefore, most dominated by only a stable single tip in the array.}, language = {en} } @inproceedings{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Field emission from black silicon structures with integrated gate electrode}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551532}, pages = {219 -- 220}, abstract = {Black silicon structures with integrated gate electrode were realized by using an improved fabrication process. An enhanced insulation layer was achieved by a combination of dry and wet oxidation, and a gold layer was evaporated as gate electrode. The black silicon structures were prepared with a RIE/ICP etching process at room temperature. Arrays of 16 and 100 apertures with buried p-doped black silicon whiskers have been fabricated. These structures have an emitter height of approximately 1.5 μm with tip radii between 5 nm and 30 nm. The whiskers are surrounded by the gate electrode in a distance of 1.5 μm. Integral field emission measurements yielded an onset voltage of 92 V for 16 apertures and 60 V for 100 apertures for an emission current of 1 nA. Maximum emission currents up to 0.2 μA were observed for the array with 100 apertures at a cathode voltage of 200 V. Stability measurements showed a current fluctuation of ± 21\% at a mean value of the emission current of 12 nA over a period of 30 minutes for 16 apertures with b-Si whiskers.}, language = {en} }