@inproceedings{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Field emission from black silicon structures with integrated gate electrode}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551532}, pages = {219 -- 220}, abstract = {Black silicon structures with integrated gate electrode were realized by using an improved fabrication process. An enhanced insulation layer was achieved by a combination of dry and wet oxidation, and a gold layer was evaporated as gate electrode. The black silicon structures were prepared with a RIE/ICP etching process at room temperature. Arrays of 16 and 100 apertures with buried p-doped black silicon whiskers have been fabricated. These structures have an emitter height of approximately 1.5 μm with tip radii between 5 nm and 30 nm. The whiskers are surrounded by the gate electrode in a distance of 1.5 μm. Integral field emission measurements yielded an onset voltage of 92 V for 16 apertures and 60 V for 100 apertures for an emission current of 1 nA. Maximum emission currents up to 0.2 μA were observed for the array with 100 apertures at a cathode voltage of 200 V. Stability measurements showed a current fluctuation of ± 21\% at a mean value of the emission current of 12 nA over a period of 30 minutes for 16 apertures with b-Si whiskers.}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert}, title = {Microrods and microlines by three-dimensional epitaxially grown GaN for field emission cathodes}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051576}, pages = {130 -- 131}, abstract = {The three-dimensional epitaxial technique allows the realization of gallium nitride lines in addition to the rods. To optimize the properties of GaN-based field emission cathodes further investigations and an improvement of the epitaxial process were performed. The microrods and microlines consist of a one-order higher n-doped gallium nitride in comparison to the gallium nitride layer on the sapphire substrate. The typical height of the microrods and -lines is about 5 μm. The field emission properties of these structures were investigated in diode configuration by integral field emission measurements at pressures below 10 -9 mbar. For the microrods (microlines) a voltage of 1100 V (2000 V) was measured for a field emission current of about 0.5 μA with an onset field of about 12 MV/m (24 MV/m). Furthermore, the field enhancement factors for microrods and -lines are in the range of 300 and 200, respectively.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Extraction of the characteristics of limiting elements from field emission measurement data}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551474}, pages = {81 -- 82}, abstract = {In this contribution we will present an algorithm to extract the characteristics of non-Fowler-Nordheim (FN) circuit elements from saturation limited field emission (FE) measurement data. The method for calculating the voltage drop on limiting circuit elements is based on circuit theory as well as Newton's method. Since no assumption on the limiting circuit is made, this method is applicable to any FE data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters are fully taken into account throughout the algorithm. External serial resistors and a limiting p-doped substrate are analyzed, where the latter shows a diode-like behavior.}, language = {en} } @inproceedings{LangerPrommesbergerŁawrowskietal., author = {Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Schreiner, Rupert and Huang, Yifeng and She, Juncong}, title = {Gated p-Si field emission cathode applied in an ionization vacuum gauge}, series = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, booktitle = {29th International Vacuum Nanoelectronics Conference (IVNC), 2016, 11-15 July, Vancouver, BC, Canada}, publisher = {IEEE}, issn = {2380-6311}, doi = {10.1109/IVNC.2016.7551500}, pages = {145 -- 146}, abstract = {A commercial Bayard-Alpert ionization vacuum gauge was equipped with a field emission electron source based on a cathode consisting of an array of 16 gated, p-doped, and DLC-coated Si-tips and characterized. An anode current of about 1.3 μA led to an ion current of 7 fA at 3×10 -7 mbar and 0.8 pA at 4×10 -5 mbar. Whereas at pressures higher than 4×10 -5 mbar the emission current of the electron source decreased, the ratio of ion and anode current remained linear. A nearly constant sensitivity of ~ 17 mbar -1 of the ionization vacuum gauge within the investigated pressure range was depicted.}, language = {en} } @inproceedings{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Control of the electron source current}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051550}, pages = {66 -- 67}, abstract = {A control circuit to stabilize the flux of electrons transmitted through an extractor electrode is presented. By controlling the emission current a fluctuation with a standard deviation of 0.015\% is observed. However, the achievable stability of the transmitted electron current is limited due to a variation of the extraction grid current ratio showing a standard deviation of 4.33\%. By regulating the difference of the emission current and the extraction grid current an improved stability of the transmitted electron current down to a standard deviation of 0.280\% is observed. Even with operation at 2 × 10 -5 mbar a standard deviation of 0.558\% is achieved.}, language = {en} } @inproceedings{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Benzocyclobutene as a novel integrated spacer material in a field emission electron source}, series = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, booktitle = {International Vacuum Nanoelectronics Conference (IVNC), 30th, 2017, Regensburg}, publisher = {IEEE}, doi = {10.1109/IVNC.2017.8051605}, pages = {192 -- 193}, abstract = {For the realization of a miniaturized field emission electron source we tested benzocyclobutene (BCB) as a new spacer material between cathode and anode. We fabricated black silicon emitters and characterized the emission behavior with an integrated 5 μm thin and large-area spacer of BCB. The integrated BCB layer allows the realization of a compact electron source with only two components consisting of a cathode with BCB and a grid. The comparison with other spacer materials like polyimide (25 μm thickness) or mica (50 μm thickness) revealed for the cathode with BCB a significantly reduced operational voltage of 240 V for a field emission current of 1 μA.}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert}, title = {Light emitting diodes based on three-dimensional epitaxial grown crystalline GaN rods}, series = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, booktitle = {7. MikroSystemTechnik Kongress "MEMS, Mikroelektronik, Systeme", 23.-25. Oktober 2017, M{\"u}nchen}, publisher = {VDE-Verlag}, address = {M{\"u}nchen}, isbn = {978-3-8007-4491-6}, pages = {131 -- 134}, language = {en} } @inproceedings{LangerŁawrowskiPrommesbergeretal., author = {Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Dams, Florian and Serbun, Pavel and Bachmann, Michael and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {High aspect ratio silicon tip cathodes for application in field emission electron sources}, series = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, booktitle = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, publisher = {IEEE}, doi = {10.1109/IVNC.2014.6894824}, pages = {222 -- 223}, abstract = {Precisely aligned arrays of sharp tip structures on top of elongated pillars were realized by using an improved fabrication process including an additional inductively-coupled-plasma reactive-ion etching step. Arrays of n-type and p-type silicon with 271 tips have been fabricated and investigated. Those structures have a total height of 5-6 µm and apex radii less than 20nm. Integral field emission measurements of the arrays yielded low onset-fields in the range of 8-12V=µm and field enhancement factors between 300 and 700. The I-E curves of n-type structures showed the usual Fowler-Nordheim behaviour, whereas p-type structures revealed a significant saturation region due to the limited number of electrons in the conduction band and a further carrier depletion effect caused by the pillar. The maximum integral current in the saturation region was 150 nA at fields above 30V=µm. An excellent stability of the emission current of less than ± 2\% fluctuation was observed in the saturation region. For n-type Si a maximum integral current of 10 µA at 24V=µm and an average current stability with a fluctuation of ± 50\% were measured.}, language = {en} } @article{BachmannDuesbergLangeretal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Herdl, Florian and Bergbreiter, Lukas and Dams, Florian and Miyakawa, Natuski and Eggert, Tobias and Pahlke, Andreas and Edler, Simon and Prommesberger, Christian and Ławrowski, Robert Damian and Hausladen, Matthias and Schreiner, Rupert}, title = {Vacuum-sealed field emission electron gun}, series = {Journal of Vacuum Science \& Technology B}, volume = {38}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, publisher = {AIP Publishing}, doi = {10.1116/1.5139316}, abstract = {A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40\% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8.}, language = {en} } @article{LangerPrommesbergerŁawrowskietal., author = {Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Dams, Florian and Schreiner, Rupert}, title = {Simulation and Fabrication of Silicon Field Emission Cathodes for Cold Electron Sources}, series = {Advanced Materials Research}, volume = {1024}, journal = {Advanced Materials Research}, doi = {10.4028/www.scientific.net/amr.1024.48}, pages = {48 -- 51}, abstract = {We report on the simulation and fabrication of nanostructured silicon surfaces for field emission (FE) applications, e.g. ionization sensors and x-ray tubes. For the design and optimization of field-emitting silicon structures, the influence of the geometric parameters like tip height, apex radius, aperture angle and curvature shape on the field enhancement factor was investigated by simulation using finite element method. A universal geometric model which describes the real geometry of our silicon structures sufficiently accurate was taken for modeling a variety of different silicon tip structures as well as ridge structures. While a high dependency of the field enhancement on the aspect ratio and the aperture angle was found, the simulations show that the elliptic curvature affects the field enhancement only marginally. Finally, an improved process for fabrication of such silicon structures on n-type as well as p-type substrate is described, using reactive ion etching with adjustable anisotropy, wet thermal oxidation and wet etching.}, language = {en} } @article{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Improvement of Homogenity and Aspect Ratio of Silicon Tips for Field Emission by Reactive-Ion Etching}, series = {Advances in materials science and engineering}, volume = {2014}, journal = {Advances in materials science and engineering}, publisher = {Hindawi}, doi = {10.1155/2014/948708}, abstract = {The homogeneity of emitters is very important for the performance of field emission (FE) devices. Reactive-ion etching (RIE) and oxidation have significant influences on the geometry of silicon tips. The RIE influences mainly the anisotropy of the emitters. Pressure has a strong impact on the anisotropic factor. Reducing the pressure results in a higher anisotropy, but the etch rate is also lower. A longer time of etching compensates this effect. Furthermore an improvement of homogeneity was observed. The impact of uprating is quite low for the anisotropic factor, but significant for the homogeneity. At low power the height and undercut of the emitters are more constant over the whole wafer. The oxidation itself is very homogeneous and has no observable effect on further variation of the homogeneity. This modified fabrication process allows solving the problem of inhomogeneity of previous field emission arrays.}, language = {en} } @inproceedings{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Muller, F. and Dams, Florian and Schreiner, Rupert and Serbun, Pavel and M{\"u}ller, G{\"u}nter}, title = {Comparison of integral and local field-emission properties of Mo-coated p-Si tip arrays}, series = {2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China}, booktitle = {2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China}, publisher = {IEEE}, doi = {10.1109/IVNC.2015.7225579}, pages = {192 -- 193}, abstract = {Silicon tip arrays were fabricated by means of reactive ion etching followed by oxidation for final sharpening and molybdenum thin film coating. The field-emission (FE) properties of these Mo-coated p-Si tip arrays were systemically investigated by different measurement techniques. Integral measurements in diode configuration yielded a turn-on field (for 1 nA) of 22 V/μm and nearly stable FE currents up to 6.6 μA at 38 V/μm. The effective field enhancements factor extracted from the FN plots is about 180. Detailed investigations of these FE arrays were also performed by means of field emission scanning microscopy combined with electron microscopy. A rather limited efficiency of the tips (50\% at 1500 V) and FE homogeneity (180 nA at 700 V) might be correlated with the varying morphology of the tips and the presence of oxides. Local I-V measurements of selected single tips revealed both activation and deactivation effects, which finally resulted in nearly reproducible I-V curves. Current stability measurements at a constant voltage showed rather large fluctuations (0.1-1 μA) of the FE current, which could be reduced up to 1.7\% by using of a PID-regulated voltage source. SEM images showed unchanged tip shape after the current processing.}, language = {en} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Dams, Florian and Bachmann, Michael and Schreiner, Rupert}, title = {Fabrication and simulation of silicon structures with high aspect ratio for field emission devices}, series = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, booktitle = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, publisher = {IEEE}, doi = {10.1109/IVNC.2014.6894805}, pages = {193 -- 194}, abstract = {To obtain higher field enhancement factors of Si-tip structures, we present an improved fabrication process utilizing reactive-ion etching (RIE) with an inductively coupled plasma (ICP). In our design, a pillar under the tips is realized by a combination of RIE with ICP. With adjusted power settings (≈ 240 W) and step times (<; 5 s), vertical slopes with a low roughness of approximately 10 nm to 20 nm are possible. The remaining silicon is oxidized thermally to sharpen the emitters. A final tip radius of R <; 20 nm is obtained for the tips of the emitters. The pillar height HP can be mainly adjusted by the duration of the ICP-etching step. A total emitter height of H ≈ 6 μm with a pillar height of HP ≈ 5 μm is achieved. Simulations with COMSOL Multiphysics® are applied to calculate the field enhancement factor β. A two-dimensional model is used in rotational symmetry. In addition to the previous model, a pillar with a varying diameter {\O}P and height HP is added. A conventional emitter (H = 1 μm and R = 20 nm) placed on a pillar of the height HP ≈ 5 μm approximately results in a three times higher β-factor (β≈ 105). By decreasing the diameter {\O}P a slight increase of the β-factor is observed. However, the aspect ratio of the emitter mainly influences on the β-factor.}, language = {en} } @inproceedings{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Dams, Florian and Schreiner, Rupert and Ławrowski, Robert Damian}, title = {Gated p-Si field emitter arrays for sensor applications}, series = {2015 28th International Vacuum Nanoelectronics Conference (IVNC)}, booktitle = {2015 28th International Vacuum Nanoelectronics Conference (IVNC)}, publisher = {IEEE}, doi = {10.1109/IVNC.2015.7225567}, pages = {164 -- 165}, abstract = {We report on gated p-type Si-tip array cathodes for implementation into field emission electron sources for sensor applications. Arrays of 16 and 100 tips with tip heights of 3 μm and tip radii below 30 nm with integrated gate electrodes concentrically positioned 2 μm below the tip apexes were fabricated using an improved process, which leads to an enhanced isolation layer quality with sufficient breakdown field strengths and low leakage currents. Integral measurements with a fixed grid potential of 400 V showed emission currents up to 35 μA for 100 tips at a cathode voltage of 150 V and an almost negligible parasitic gate current. The array with 16 p-type Si-tips showed a significant stabilization of the emission current in the range of 0.3 - 0.4 μA, for cathode voltages between 90 V and 150 V. The current fluctuation in this saturation regime was measured for 10 minutes and a value of less than ± 1\% was observed. No degradation of the cathode was found after 6 hours of operation at a constant cathode voltage of 100 V and a constant grid voltage of 400 V.}, language = {en} } @inproceedings{LangerPrommesbergerŁawrowskietal., author = {Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and M{\"u}ller, F. and Schreiner, Rupert and Serbun, Pavel and M{\"u}ller, G{\"u}nter}, title = {Enhanced field emission from p-doped black silicon on pillar structures}, series = {2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China}, booktitle = {2015 28th International Vacuum Nanoelectronics Conference (IVNC), 13-17 July 2015, Guangzhou, China}, publisher = {IEEE}, doi = {10.1109/IVNC.2015.7225547}, pages = {104 -- 105}, abstract = {Aligned square arrays of black silicon (b-Si) on top of pillars were fabricated on p-type silicon substrate by a deep-etching step combined with a b-Si process. Two 10×10 arrays with pillar heights of 8 μm and 20 μm and one b-Si reference sample without pillars were investigated. Integral field emission (FE) measurements of the arrays yielded rather low onset-fields between 6.4 V/μm and 13.5 V/μm and field enhancement factors between 430 and 800. The I-V curves showed typical Fowler-Nordheim behavior for low fields, whereas a saturation region was observed at higher fields. The maximum integral current in the saturation region was 8 μA at a field of 20 V/μm. The stability of the emission current was investigated over 3 hours and revealed moderate fluctuations of ± 8\% in the saturation region. Voltage scans showed well-aligned FE from nearly all pillars.}, language = {en} } @inproceedings{PrommesbergerŁawrowskiLangeretal., author = {Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Realisierung von Siliziumspitzenarrays mit integrierter Gate-Elektrode f{\"u}r Anwendungen in der Vakuumsensorik}, series = {4. Landshuter Symposium Mikrosystemtechnik, Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration, Tagungsband zum Symposium 12./13. M{\"a}rz 2014, Hochschule Landshut}, booktitle = {4. Landshuter Symposium Mikrosystemtechnik, Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration, Tagungsband zum Symposium 12./13. M{\"a}rz 2014, Hochschule Landshut}, address = {Landshut}, isbn = {978-3-9812696-5-9}, pages = {36 -- 41}, abstract = {Bei der Feldemission (kalte Emission) k{\"o}nnen Elektronen durch ein starkes elektrisches Feld eine glatte und leitende Oberfl{\"a}che verlassen. Die Elektronen tunneln dabei durch eine Potentialbarriere, deren Breite durch ein {\"a}ußeres elektrisches Feld verkleinert wird. Durch das Hinzuf{\"u}gen einer integrierten Gate-Elektrode um eine Siliziumspitze kann die notwendige Einsatzspannung f{\"u}r Feldemission deutlich gesenkt werden. Zwischen Si-Kathode und Gate-Elektrode befindet sich dabei eine Isolationsschicht, die h{\"o}chste Anforderungen bez{\"u}glich der elektrischen Durchbruchsfestigkeit erf{\"u}llen muss. Mit einer Kombination aus Trocken- (Schichtdicke 50 nm) und Feuchtoxid (Schichtdicke 950 nm) konnte eine Isolationsschicht entwickelt werden, die im integrierten Aufbau eine minimale Durchbruchsfeldst{\"a}rke von 3,2 MV/cm aufweist. F{\"u}r die Realisierung von Siliziumkathoden mit integrierter Gate-Elektrode wurde ein bereits bestehender Herstellungsprozess um zus{\"a}tzliche Prozessschritte erweitert. Die {\"U}bertragung der lateralen Position der Spitze erfolgt durch Strukturierung des Umkehrlacks AZ5214 und einer RIE-{\"A}tzung der zuvor hergestellten SiO2-Schicht. Nach dem Entfernen der Lackschicht wird die vertikale Struktur der Siliziumspitzen durch einen RIE-{\"A}tzprozess mit den Prozessgasen SF6 und O)2 realisiert. Aus einer thermischen Oxidation bei 940 °C resultiert anschließend die Isolationsschicht zwischen Si-Kathode und Gate-Elektrode . Gleichzeitig wird diese Ansch{\"a}rfeoxidation auch zur Realisierung der endg{\"u}ltigen Spitzengeometrie verwendet. Durch die lithographische Strukturierung des Photolacks AZ5214 kann dabei die Fl{\"a}che der aufgedampften Gate-Elektrode festgelegt werden. Die Gate-Elektrode wird in einem selbstjustierenden Prozessschritt exakt konzentrisch um die Si-Spitze aufgedampft. Der gerichtete Aufdampfprozess bewirkt eine Abschattung, so dass das Oxidpl{\"a}ttchen nicht komplett von Metall ummantelt wird. Die Opferschicht aus Photolack wird mit den nicht ben{\"o}tigten Metallfl{\"a}chen in einem Lift-off-Prozess entfernt.}, language = {de} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Dams, Florian and Serbun, Pavel and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {Spitzen- und Kantenemitter aus Silizium mit einem hohen Aspektverh{\"a}ltnis f{\"u}r Ionisationsgassensoren}, series = {Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration : 4. Landshuter Symposium Mikrosystemtechnik ; Tagungsband zum Symposium ; 12./13. M{\"a}rz 2014, Hochschule Landshut}, booktitle = {Mikrosystemtechnik als Schl{\"u}sseltechnologie der Systemintegration : 4. Landshuter Symposium Mikrosystemtechnik ; Tagungsband zum Symposium ; 12./13. M{\"a}rz 2014, Hochschule Landshut}, publisher = {Cluster Mikrosystemtechnik}, address = {Landshut}, isbn = {978-3-9812696-5-9}, pages = {28 -- 35}, abstract = {Durch die Optimierung von reaktivem Ionen{\"a}tzen mit induktiv gekoppeltem Plasma ist die Herstellung von verschiedenen Siliziumkathoden mit hoher Anisotropie und hohem Aspektverh{\"a}ltnis f{\"u}r Feldemissionsanwendungen m{\"o}glich. Simulationen mit COMSOL Multiphysics untermauern das Potential von solchen Spitzen- und Kantenfeldemittern. Die Ergebnisse der Simulation zeigen einen zwei- bis sechsfach h{\"o}heren Feld{\"u}berh{\"o}hungsfaktor der tiefge{\"a}tzten Strukturen im Vergleich zu identischen Emittern ohne zus{\"a}tzliche Tiefen{\"a}tzung. Feldemissionsmessungen best{\"a}tigen die Simulationsergebnisse. Der modifizierte Herstellungsprozess der Feldemitter erm{\"o}glicht somit einen zuverl{\"a}ssigen Betrieb von Feldemissionselektronenquellen bei kleineren makroskopischen Feldst{\"a}rken. Außerdem weisen die Messungen des Emissionsstroms im S{\"a}ttigungsbereich eine weitgehende Unabh{\"a}ngigkeit vom elektrischen Feld auf. Lokale Feldemissionsmessungen ergeben dadurch eine deutliche Stromstabilisierung, welche {\"u}ber große Feldst{\"a}rkenbereiche konstant bleibt. Die Nutzung der HAR-Emitter (high aspect ratio) ist damit eine gute Voraussetzung f{\"u}r einen zuverl{\"a}ssigen Betrieb der Emissionskathoden bei kleinen Feldst{\"a}rken f{\"u}r die Anwendung in Ionisationsgassensoren.}, language = {de} } @article{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Improvement of Homogeneity and Aspect Ratio of Silicon Tips for Field Emission by Reactive-Ion Etching}, series = {Advances in Materials Science and Engineering. Special issue: Advances in Smart Materials and Applications}, volume = {2014}, journal = {Advances in Materials Science and Engineering. Special issue: Advances in Smart Materials and Applications}, publisher = {Hindawi}, issn = {1687-8442}, doi = {10.1155/2014/948708}, pages = {1 -- 6}, abstract = {The homogeneity of emitters is very important for the performance of field emission (FE) devices. Reactive-ion etching (RIE) and oxidation have significant influences on the geometry of silicon tips. The RIE influences mainly the anisotropy of the emitters. Pressure has a strong impact on the anisotropic factor. Reducing the pressure results in a higher anisotropy, but the etch rate is also lower. A longer time of etching compensates this effect. Furthermore an improvement of homogeneity was observed. The impact of uprating is quite low for the anisotropic factor, but significant for the homogeneity. At low power the height and undercut of the emitters are more constant over the whole wafer. The oxidation itself is very homogeneous and has no observable effect on further variation of the homogeneity. This modified fabrication process allows solving the problem of inhomogeneity of previous field emission arrays.}, language = {en} } @inproceedings{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Influence of reactive ion etching parameters on the geometry of silicon tip cathodes for field emission}, series = {Applied Research Conference 2013, ARC 2013 : 17th and 18th October 2013, Deggendorf}, booktitle = {Applied Research Conference 2013, ARC 2013 : 17th and 18th October 2013, Deggendorf}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8440-2274-2}, pages = {67 -- 69}, language = {en} } @incollection{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Feldemissionselektronenquellen basierend auf Siliziumemittern mit hohen Aspektverh{\"a}ltnis}, series = {Forschungsbericht der OTH Regensburg 2013}, booktitle = {Forschungsbericht der OTH Regensburg 2013}, address = {Regensburg}, pages = {47 -- 48}, language = {de} }