@misc{ScharfenbergMottokArtmannetal., author = {Scharfenberg, Georg and Mottok, J{\"u}rgen and Artmann, Christina and Hobelsberger, Martin and Paric, Ivan and Großmann, Benjamin and Pohlt, Clemens and Wackerbarth, Alena and Pausch, Uli and Heidrich, Christiane and Fadanelli, Martin and Elsner, Michael and P{\"o}cher, Daniel and Pittroff, Lenz and Beer, Stefan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Sterner, Michael and Thema, Martin and Muggenthaler, Nicole and Lenck, Thorsten and G{\"o}tz, Philipp and Eckert, Fabian and Deubzer, Michael and Stingl, Armin and Simsek, Erol and Kr{\"a}mer, Stefan and Großmann, Benjamin and Schlegl, Thomas and Niedersteiner, Sascha and Berlehner, Thomas and Joblin, Mitchell and Mauerer, Wolfgang and Apel, Sven and Siegmund, Janet and Riehle, Dirk and Weber, Joachim and Palm, Christoph and Zobel, Martin and Al-Falouji, Ghassan and Prestel, Dietmar and Scharfenberg, Georg and Mandl, Roland and Deinzer, Arnulf and Halang, W. and Margraf-Stiksrud, Jutta and Sick, Bernhard and Deinzer, Renate and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Wiech, Katharina and Kubata, Christoph and Sindersberger, Dirk and Monkman, Gareth J. and Dollinger, Markus and Dembianny, Sven and K{\"o}lbl, Andreas and Welker, Franz and Meier, Matthias and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Haug, Sonja and Vernim, Matthias and Seidenst{\"u}cker, Barbara and Weber, Karsten and Arsan, Christian and Schone, Reinhold and M{\"u}nder, Johannes and Schroll-Decker, Irmgard and Dillinger, Andrea Elisabeth and Fuchshofer, Rudolf and Monkman, Gareth J. and Shamonin (Chamonine), Mikhail and Geith, Markus A. and Koch, Fabian and {\"U}hlin, Christian and Schratzenstaller, Thomas and Saßmannshausen, Sean Patrick and Auchter, Eberhard and Kriz, Willy and Springer, Othmar and Thumann, Maria and Kusterle, Wolfgang and Obermeier, Andreas and Udalzow, Anton and Schmailzl, Anton and Hierl, Stefan and Langer, Christoph and Schreiner, Rupert}, title = {Forschungsbericht / Ostbayerische Technische Hochschule Regensburg}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-00-048589-3}, doi = {10.35096/othr/pub-1386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13867}, language = {de} } @misc{BeimlerLeisslEbneretal., author = {Beimler, Josef and Leißl, Caroline and Ebner, Lena and Elsner, Michael and M{\"u}hlbauer, Gerhard and Kohlert, Dieter and Schubert, Martin J. W. and Weiß, Andreas P. and Sterner, Michael and Raith, Thomas and Afranseder, Martin and Krapf, Tobias and Mottok, J{\"u}rgen and Siemers, Christian and Großmann, Benjamin and H{\"o}cherl, Johannes and Schlegl, Thomas and Schneider, Ralph and Milaev, Johannes and Rampelt, Christina and Roduner, Christian and Glowa, Christoph and Bachl, Christoph and Schliekmann, Claus and Gnan, Alfons and Grill, Martin and Ruhland, Karl and Piehler, Thomas and Friers, Daniel and Wels, Harald and Pflug, Kenny and Kucera, Markus and Waas, Thomas and Schlachetzki, Felix and Boy, Sandra and Pemmerl, Josef and Leis, Alexander and Welsch, Andreas F.X. and Graf, Franz and Zenger, Gerhard and Volbert, Klaus and Waas, Thomas and Scherzinger, Stefanie and Klettke, Meike and St{\"o}rl, Uta and Heyl, C. and Boldenko, A. and Monkman, Gareth J. and Kujat, Richard and Briem, Ulrich and Hierl, Stefan and Talbot, Sebastian and Schmailzl, Anton and Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert and Valentino, Piergiorgio and Romano, Marco and Ehrlich, Ingo and Furgiuele, Franco and Gebbeken, Norbert and Eisenried, Michael and Jungbauer, Bastian and Hutterer, Albert and Bauhuber, Michael and Mikrievskij, Andreas and Argauer, Monika and Hummel, Helmut and Lechner, Alfred and Liebetruth, Thomas and Schumm, Michael and Joseph, Saskia and Reschke, Michael and Soska, Alexander and Schroll-Decker, Irmgard and Putzer, Michael and Rasmussen, John and Dendorfer, Sebastian and Weber, Tim and Al-Munajjed, Amir Andreas and Verkerke, Gijsbertus Jacob and Renkawitz, Tobias and Haug, Sonja and Rudolph, Clarissa and Zeitler, Annika and Schaubeck, Simon and Steffens, Oliver and Rechenauer, Christian and Schulz-Brize, Thekla and Fleischmann, Florian and Kusterle, Wolfgang and Beer, Anne and Wagner, Bernd and Neidhart, Thomas}, title = {Forschungsbericht 2013}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-799}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7990}, pages = {80}, language = {de} } @misc{MauererRexhepajMonkmanetal., author = {Mauerer, Wolfgang and Rexhepaj, Tanja and Monkman, Gareth J. and Sindersberger, Dirk and Diermeier, Andreas and Neidhart, Thomas and Wolfrum, Dominik and Sterner, Michael and Heberl, Michael and Nusko, Robert and Maier, Georg and Nagl, Klaus and Reuter, Monika and Hofrichter, Andreas and Lex, Thomas and Lesch, Florian and Kieninger, B{\"a}rbel and Szalo, Alexander Eduard and Zehner, Alexander and Palm, Christoph and Joblin, Mitchell and Apel, Sven and Ramsauer, Ralf and Lohmann, Daniel and Westner, Markus and Strasser, Artur and Munndi, Maximilian and Ebner, Lena and Elsner, Michael and Weiß, Nils and Segerer, Matthias and Hackenberg, Rudolf and Steger, Sebastian and Schmailzl, Anton and Dostalek, Michael and Armbruster, Dominik and Koch, Fabian and Hierl, Stefan and Thumann, Philipp and Swidergal, Krzysztof and Wagner, Marcus and Briem, Ulrich and Diermeier, Andreas and Spreitzer, Stefan and Beiderbeck, Sabrina and Hook, Christian and Zobel, Martin and Weber, Tim and Groß, Simon and Penzkofer, Rainer and Dendorfer, Sebastian and Schillitz, Ingo and Bauer, Thomas and Rudolph, Clarissa and Schmidt, Katja and Liebetruth, Thomas and Hamer, Markus and Haug, Sonja and Vernim, Matthias and Weber, Karsten and Saßmannshausen, Sean Patrick and Books, Sebastian and Neuleitner, Nikolaus and Rechenauer, Christian and Steffens, Oliver and Kusterle, Wolfgang and G{\"o}mmel, Roland and Wellnitz, Felix and Stierstorfer, Johannes and Stadler, Dominik and Hofmann, Matthias J. and Motschmann, Hubert and Shamonin (Chamonine), Mikhail and Bleicher, Veronika and Fischer, Sebastian and Hackenberg, Rudolf and Horn, Anton and Kawasch, Raphael and Petzenhauser, Michael and Probst, Tobias and Udalzow, Anton and Dams, Florian and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian}, title = {Forschungsbericht 2016}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-1384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13840}, language = {de} } @misc{WeberDendorferSuessetal., author = {Weber, Karsten and Dendorfer, Sebastian and S{\"u}ß, Franz and Kubowitsch, Simone and Schratzenstaller, Thomas and Haug, Sonja and Mohr, Christa and Kiesl, Hans and Drechsler, J{\"o}rg and Westner, Markus and Kobus, J{\"o}rn and Schubert, Martin J. W. and Zenger, Stefan and Pietsch, Alexander and Weiß, Josef and Hinterseer, Sebastian and Schieck, Roland and Scherzinger, Stefanie and Klettke, Meike and Ringlstetter, Andreas and St{\"o}rl, Uta and Bissyand{\´e}, Tegawend{\´e} F. and Seeburger, Achim and Schindler, Timo and Ramsauer, Ralf and Kiszka, Jan and K{\"o}lbl, Andreas and Lohmann, Daniel and Mauerer, Wolfgang and Maier, Johannes and Scorna, Ulrike and Palm, Christoph and Soska, Alexander and Mottok, J{\"u}rgen and Ellermeier, Andreas and V{\"o}gele, Daniel and Hierl, Stefan and Briem, Ulrich and Buschmann, Knut and Ehrlich, Ingo and Pongratz, Christian and Pielmeier, Benjamin and Tyroller, Quirin and Monkman, Gareth J. and Gut, Franz and Roth, Carina and Hausler, Peter and Bierl, Rudolf and Prommesberger, Christian and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Huang, Yifeng and She, Juncong and Ottl, Andreas and Rieger, Walter and Kraml, Agnes and Poxleitner, Thomas and Hofer, Simon and Heisterkamp, Benjamin and Lerch, Maximilian and Sammer, Nike and Golde, Olivia and Wellnitz, Felix and Schmid, Sandra and Muntschick, Claudia and Kusterle, Wolfgang and Paric, Ivan and Br{\"u}ckl, Oliver and Haslbeck, Matthias and Schmidt, Ottfried and Schwanzer, Peter and Rabl, Hans-Peter and Sterner, Michael and Bauer, Franz and Steinmann, Sven and Eckert, Fabian and Hofrichter, Andreas}, title = {Forschungsbericht 2017}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-3-5}, doi = {10.35096/othr/pub-1383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-13835}, subject = {Forschung}, language = {de} } @misc{LautenschlaegerLeisDendorferetal., author = {Lautenschl{\"a}ger, Toni and Leis, Alexander and Dendorfer, Sebastian and Palm, Christoph and Schreiner, Rupert and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Dams, Florian and Bornmann, Benjamin and Navitski, Aliaksandr and Serbun, Pavel and M{\"u}ller, G{\"u}nter and Liebetruth, Thomas and Kohlert, Dieter and Pernsteiner, Jochen and Schreier, Franz and Heerklotz, Sabrina and Heerklotz, Allwin and Boos, Alexander and Herwald, Dominik and Monkman, Gareth J. and Treiber, Daniel and Mayer, Matthias and H{\"o}rner, Eva and Bentz, Alexander and Shamonin (Chamonine), Mikhail and Johansen, S{\o}ren Peter and Reichel, Marco and Stoll, Andrea and Briem, Ulrich and Dullien, Silvia and Renkawitz, Tobias and Weber, Tim and Dendorfer, Sebastian and Grifka, Joachim and Penzkofer, Rainer and Barnsteiner, K. and Jovanovik, M. and Wernecke, P. and V{\"o}gele, A. and Bachmann, T. and Pl{\"o}tz, Martin and Schliekmann, Claus and Wels, Harald and Helmberger, Paul and Kaspar, M. and H{\"o}nicka, M. and Schrammel, Siegfried and Enser, Markus and Schmidmeier, Monika and Schroll-Decker, Irmgard and Haug, Sonja and Gelfert, Verena and Vernim, Matthias}, title = {Forschungsbericht 2012}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, doi = {10.35096/othr/pub-783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7834}, pages = {64}, language = {de} } @misc{AppelhansKampmannMottoketal., author = {Appelhans, Marie-Luise and Kampmann, Matthias and Mottok, J{\"u}rgen and Riederer, Michael and Nagl, Klaus and Steffens, Oliver and D{\"u}nnweber, Jan and Wildgruber, Markus and Roth, Julius and Stadler, Timo and Palm, Christoph and Weiß, Martin Georg and Rochholz, Sandra and Bierl, Rudolf and Gschossmann, Andreas and Haug, Sonja and Schmidbauer, Simon and Koch, Anna and Westner, Markus and Bary, Benedikt von and Ellermeier, Andreas and V{\"o}gele, Daniel and Maiwald, Frederik and Hierl, Stefan and Schlamp, Matthias and Ehrlich, Ingo and Siegl, Marco and H{\"u}ntelmann, Sven and Wildfeuer, Matthias and Br{\"u}ckl, Oliver and Sterner, Michael and Hofrichter, Andreas and Eckert, Fabian and Bauer, Franz and Dawoud, Belal and Rabl, Hans-Peter and Gamisch, Bernd and Schmidt, Ottfried and Heberl, Michael and Thema, Martin and Mayer, Ulrike and Eller, Johannes and Sippenauer, Thomas and Adelt, Christian and Haslbeck, Matthias and Vogl, Bettina and Mauerer, Wolfgang and Ramsauer, Ralf and Lohmann, Daniel and Sax, Irmengard and Gabor, Thomas and Feld, Sebastian and Linnhoff-Popien, Claudia and Ławrowski, Robert Damian and Langer, Christoph and Schreiner, Rupert and Sellmair, Josef}, title = {Forschung 2019}, editor = {Baier, Wolfgang}, address = {Regensburg}, organization = {Ostbayerische Technische Hochschule Regensburg}, isbn = {978-3-9818209-7-3}, doi = {10.35096/othr/pub-789}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:898-opus4-7890}, pages = {72}, abstract = {Bericht mit Forschungsprojekten aus verschiedenen Bereichen der OTH Regensburg mit dem Schwerpunktthema "K{\"u}nstliche Intelligenz" und einem Gespr{\"a}ch zur "Medizin der Zukunft"}, subject = {Forschung}, language = {de} } @article{PrommesbergerLangerŁawrowskietal., author = {Prommesberger, Christian and Langer, Christoph and Ławrowski, Robert Damian and Schreiner, Rupert}, title = {Investigations on the long-term performance of gated p-type silicon tip arrays with reproducible and stable field emission behavior}, series = {Journal of Vacuum Science \& Technology B}, volume = {35}, journal = {Journal of Vacuum Science \& Technology B}, number = {1}, doi = {10.1116/1.4972519}, abstract = {The authors report on the fabrication and characterization of p-type Si tip arrays with an integrated gate electrode for applications as field emission electron sources. After the reactive ion etching of the emitters, the combined thermal dry and wet oxidation was used for both the sharpening of the emitters and for the realization of an enhanced insulation layer. Au was evaporated in a self-aligned process as gate electrode. Arrays of 16 Si tips were fabricated with tip heights of about 3 μm and tip radii of about 20 nm with integrated gate electrode concentrically positioned ≈2 μm below the tip apex. Integral measurements with an additional anode showed improved field emission properties with a reproducible and stable emission behavior. A fast activation of the tips, low onset voltages of about 30 V, and moderate field emission currents up to 0.55 μA were noticed. The field emission parameters were calculated using the Fowler-Nordheim characteristics. A pronounced saturation regime was observed, and current fluctuations of less than ±1\% were investigated for 30 min. Long-term measurements were carried out for a period of more than 8 h. In the first 6 h of operation, the authors observed a drift of the emission current from 0.35 to 0.55 μA caused by an increased emission surface.}, language = {en} } @inproceedings{BiekerRoustaieLangeretal., author = {Bieker, Johannes and Roustaie, Farough and Langer, Christoph and Schreiner, Rupert and Schlaak, Helmut F.}, title = {Innovatives Verfahren zur Herstellung und Integration metallischer Nanokonen f{\"u}r die Feldemission}, series = {MikroSystemTechnik Kongress 2017 : MEMS, Mikroelektronik, Systeme 23.-25. Oktober 2017 in M{\"u}nchen}, booktitle = {MikroSystemTechnik Kongress 2017 : MEMS, Mikroelektronik, Systeme 23.-25. Oktober 2017 in M{\"u}nchen}, number = {CD-ROM}, publisher = {VDE-Verlag}, address = {M{\"u}nchen}, isbn = {978-3-8007-4491-6}, pages = {797 -- 800}, abstract = {In den letzten Jahren wurde am Institut f{\"u}r Elektromechanische Konstruktionen die Fabrikation und Integration von metallischen Nanodr{\"a}hten und Nanokonen mittels Template-basierter Abscheidung erforscht. Diese Variante der in-situ Abscheidung von metallischen Nanostrukturen bietet eine Vielzahl von Anwendungsm{\"o}glichkeiten. Im Rahmen dieses Beitrags werden das Herstellungsverfahren zur Herstellung metallischer Nanokonen vorgestellt. Dies beinhaltet sowohl die Templatepr{\"a}paration mittels asymmetrischen {\"A}tzens als auch die anschließende Integration mittels galvanischer Abscheidung. Eine Anwendung der metallischen Nanokonen stellt die Verwendung als Feldemitter in der Vakuumelektronik dar. Es werden erste Messungen der Langzeitstabilit{\"a}t des Feldemissionsstromes der metallischen Konen pr{\"a}sentiert.}, language = {de} } @inproceedings{ŁawrowskiLangerPrommesbergeretal., author = {Ławrowski, Robert Damian and Langer, Christoph and Prommesberger, Christian and Dams, Florian and Bachmann, Michael and Schreiner, Rupert}, title = {Fabrication and simulation of silicon structures with high aspect ratio for field emission devices}, series = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, booktitle = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, publisher = {IEEE}, doi = {10.1109/IVNC.2014.6894805}, pages = {193 -- 194}, abstract = {To obtain higher field enhancement factors of Si-tip structures, we present an improved fabrication process utilizing reactive-ion etching (RIE) with an inductively coupled plasma (ICP). In our design, a pillar under the tips is realized by a combination of RIE with ICP. With adjusted power settings (≈ 240 W) and step times (<; 5 s), vertical slopes with a low roughness of approximately 10 nm to 20 nm are possible. The remaining silicon is oxidized thermally to sharpen the emitters. A final tip radius of R <; 20 nm is obtained for the tips of the emitters. The pillar height HP can be mainly adjusted by the duration of the ICP-etching step. A total emitter height of H ≈ 6 μm with a pillar height of HP ≈ 5 μm is achieved. Simulations with COMSOL Multiphysics® are applied to calculate the field enhancement factor β. A two-dimensional model is used in rotational symmetry. In addition to the previous model, a pillar with a varying diameter {\O}P and height HP is added. A conventional emitter (H = 1 μm and R = 20 nm) placed on a pillar of the height HP ≈ 5 μm approximately results in a three times higher β-factor (β≈ 105). By decreasing the diameter {\O}P a slight increase of the β-factor is observed. However, the aspect ratio of the emitter mainly influences on the β-factor.}, language = {en} } @article{BachmannDuesbergLangeretal., author = {Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Herdl, Florian and Bergbreiter, Lukas and Dams, Florian and Miyakawa, Natuski and Eggert, Tobias and Pahlke, Andreas and Edler, Simon and Prommesberger, Christian and Ławrowski, Robert Damian and Hausladen, Matthias and Schreiner, Rupert}, title = {Vacuum-sealed field emission electron gun}, series = {Journal of Vacuum Science \& Technology B}, volume = {38}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, publisher = {AIP Publishing}, doi = {10.1116/1.5139316}, abstract = {A compact vacuum-sealed field emission electron gun with an operation voltage below 5 kV is presented. With a 150 nm thick pyrolytic carbon membrane, a transmission of 40\% at 5 kV is obtained. For more than 2500 h of continuous operation at an emission current of 100 nA, no significant increase (<50V ) and almost no degradation were found. From this measurement, a lifetime of more than 10 000 h at continuous operation with approximately a linear increase of the extraction voltage from about 545 V to about 730 V is predicted. This electron source enables application of field emitter arrays in poor vacuum or even ambient pressure. ACKNOWLEDGMENT This work was supported by the German Federal Ministry for Economic Affairs and Energy under Project No. ZF4081502GM8. C.P., R.L., M.H., and R.S. were supported by Grant No. ZF4562901GM8.}, language = {en} } @article{EdlerBachmannBreueretal., author = {Edler, Simon and Bachmann, Michael and Breuer, Janis and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Jakšič, Jasna and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert}, title = {Influence of adsorbates on the performance of a field emitter array in a high voltage triode setup}, series = {Journal of Applied Physics}, volume = {122}, journal = {Journal of Applied Physics}, doi = {10.1063/1.4987134}, abstract = {In the present work, black-silicon field emitter arrays (FEAs) are investigated regarding the influence of residual gas pressure on the characteristics and lifetime in the high voltage triode setup. Current-voltage-characteristics at different pressure levels are recorded and show a decreasing emission current with rising pressure. This decrease can be explained by an increase of the work function and charging of the emitter surface caused by adsorbates. The emission current can be restored to its initial value by heating of the FEA up to 110 °C during active emission. With this regeneration procedure, an extended lifetime from about 20 h to 440 h at a residual gas pressure of 10-5 mbar is achieved.}, language = {en} } @article{KleshchSerbunLuetzenkirchenHechtetal., author = {Kleshch, Victor I. and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk and Orekhov, Anton S. and Ivanov, Victor E. and Prommesberger, Christian and Langer, Christoph and Schreiner, Rupert and Obraztsov, Alexander N.}, title = {A Comparative Study of Field Emission from Pristine, Ion-treated and Tungsten Nanoparticle-decorated p-type Silicon Tips}, series = {Physica Status Solidi B}, volume = {256}, journal = {Physica Status Solidi B}, number = {9}, publisher = {Wiley}, doi = {10.1002/pssb.201800646}, abstract = {The field electron emission characteristics of individual tips of a silicon field emitter array are analyzed. The array of conical-shaped tips is fabricated on a p-type silicon wafer by using reactive ion etching and sharpening oxidation. The tips are decorated with single tungsten nanoparticles at their apexes. Furthermore, the focused ion beam is also used to increase surface conductivity of some of the tips. Comparative measurements of field emission are performed by using the scanning anode probe field emission microscopy technique. All types of tips demonstrated emission activation consisting of a sudden current increase at a certain value of the applied voltage. Compared to the pristine tips, a noticeable reduction of the saturation effect in the current-voltage characteristics and a smaller light sensitivity for the decorated tips is found. For ion-treated tips, saturation effects and light sensitivity are completely suppressed. Scanning electron microscopy observations reveal the formation of single nanoscale protrusions extending from the metal particles and from the apexes of bare ion-treated tips after exposure under strong electric fields during the field emission measurements. The influence of protrusions growth on characteristics of silicon field emitter arrays is discussed.}, language = {en} } @article{LangerBomkeHausladenetal., author = {Langer, Christoph and Bomke, Vitali and Hausladen, Matthias and Ławrowski, Robert Damian and Prommesberger, Christian and Bachmann, Michael and Schreiner, Rupert}, title = {Silicon Chip Field Emission Electron Source Fabricated by Laser Micromachining}, series = {Journal of Vacuum Science \& Technology B}, volume = {38}, journal = {Journal of Vacuum Science \& Technology B}, number = {1}, publisher = {AIP Publishing}, doi = {10.1116/1.5134872}, abstract = {The components for a silicon chip electron source were fabricated by laser micromachining using pulsed laser ablation and wet chemical cleaning and etching dips. The field emission electron source consists of a silicon field emission cathode with 4 × 4 conical shaped emitters with a height of 250 μm and a tip radius of about 50 nm, a 50 μm thick laser-structured mica spacer, and a silicon grid electrode with a grid periodicity of 200 μm and a bar width of 50 μm. These three components are combined to a single chip with the size of 14 × 10 mm2 and the thickness of 1 mm to form the electron source. Several of these devices were characterized in ultrahigh vacuum. Onset voltages of about 165 V and cathode currents of about 15 μA for voltages lower than 350 V were observed. Operating the electron source with an anode voltage of 500 V and an extraction grid voltage of 300 V yielded a cathode current of 4.5 μA ± 8.9\%, an anode current of 4.0 μA ± 9.6\%, and a corresponding grid transmittance of 89\%. Regulating the anode current by the extraction grid voltage, an extremely stable anode current of 5.0 μA ± 0.017\% was observed. A long-term measurement over 120 h was performed, and no significant degradation or failure was observed.}, language = {en} } @article{BreuerBachmannDuesbergetal., author = {Breuer, Janis and Bachmann, Michael and D{\"u}sberg, Felix and Pahlke, Andreas and Edler, Simon and Langer, Christoph and Prommesberger, Christian and Ławrowski, Robert Damian and Schreiner, Rupert and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk}, title = {Extraction of the current distribution out of saturated integral measurement data of p-type silicon field emitter arrays}, series = {Journal of Vacuum Science and Technology B}, volume = {36}, journal = {Journal of Vacuum Science and Technology B}, number = {5}, publisher = {AIP Publishing}, doi = {10.1116/1.5035189}, abstract = {At the moment, only complicated techniques are known for the determination of array properties of field emitter arrays such as the number of active tips, the current distribution, or the individual tip radii. In this work, a method for extracting these parameters from integral measurement data is presented. A model describing the characteristics of a single emitter, including the saturation as a function of the applied voltage and the emitter radius, is developed. It is shown that experimental data of field emitter arrays can be represented as the sum of these functions and the characteristic parameters can be fitted to field emission data of an array. Using this method, the values of the radii as well as the parameters of distribution models can be determined directly. Analysis of experimental data from p-type Si emitter arrays shows that only 1-2\% of the tips contribute significantly.}, language = {en} } @article{BachmannDamsDuesbergetal., author = {Bachmann, Michael and Dams, Florian and D{\"u}sberg, Felix and Hofmann, Martin and Pahlke, Andreas and Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Schreiner, Rupert and Serbun, Pavel and L{\"u}tzenkirchen-Hecht, Dirk and M{\"u}ller, G{\"u}nter}, title = {Extraction of the characteristics of current-limiting elements from field emission measurement data}, series = {Journal of Vacuum Science \& Technology B}, volume = {35}, journal = {Journal of Vacuum Science \& Technology B}, number = {2}, doi = {10.1116/1.4971768}, abstract = {In this contribution, the authors will present an algorithm to extract the characteristics of nonideal field emission circuit elements from saturation-limited field emission measurement data. The method for calculating the voltage drop on current-limiting circuit elements is based on circuit theory as well as Newton's method. Since the only assumption the authors make on the current-limiting circuit is a connection in series, this method is applicable to most field emission data showing saturation. To be able to determine the significance of any parameter output, the uncertainties of data and extracted parameters as well as the parameter correlations are fully taken into account throughout the algorithm. N-type silicon samples with varying external serial resistors are analyzed. All results show a good agreement to the nominal resistor values. Additionally, several p-type samples are analyzed, showing a diodelike behavior. The extracted current-limiting characteristics of the p-type samples are in good agreement with a pn-junction model. The stability of the emission current of the p-type samples is measured by constant voltage measurements and compared to the extracted current-limiting characteristics. The application of the algorithm to measurement data shows that the given algorithm is a valuable tool to analyze field emission measurement data influenced by nonemissive processes.}, language = {en} } @article{PrommesbergerBachmannDuesbergetal., author = {Prommesberger, Christian and Bachmann, Michael and D{\"u}sberg, Felix and Langer, Christoph and Ławrowski, Robert Damian and Hofmann, Martin and Pahlke, Andreas and Schreiner, Rupert}, title = {Regulation of the Transmitted Electron Flux in a Field-Emission Electron Source Demonstrated on Si Nanowhisker Cathodes}, series = {IEEE Transactions on Electron Devices}, volume = {64}, journal = {IEEE Transactions on Electron Devices}, number = {12}, issn = {5128-5133}, doi = {10.1109/TED.2017.2763239}, abstract = {We report on a method to stabilize the transmitted electron flux in a field-emission electron source using an external regulation circuit. The electron source was realized with an array of silicon (Si) nanowhiskers on the top of elongated pillar structures, a mica spacer, and an extraction grid made of Si. As for most applications, the emitted electron current from the cathode is not as crucial as the transmitted electron flux through the extraction grid toward the anode. We investigated a method which allows the regulation directly by the emitted electron flux and not merely on the cathode current. By using this method, we were able to stabilize the emitted electron flux of our electron source down to values below 1\%. Simultaneously, it was shown that there is the possibility to stabilize the influencing value in the real application as well. The effectiveness of this method was demonstrated successfully with an X-ray source setup. The measured X-ray photon count rate was stabilized to a standard deviation of 0.30\% at a pressure of 1 × 10 -7 mbar. Even in harsh environment of 2 × 10 -5 mbar, a stabilization of the X-ray photon count rate down to a value of 0.63\% was achieved.}, language = {en} } @article{MingelsPorshynPrommesbergeretal., author = {Mingels, S. and Porshyn, V. and Prommesberger, Christian and Langer, Christoph and Schreiner, Rupert and L{\"u}tzenkirchen-Hecht, Dirk and M{\"u}ller, G{\"u}nter}, title = {Photosensitivity of p-type black Si field emitter arrays}, series = {Journal of Applied Physics}, volume = {119}, journal = {Journal of Applied Physics}, number = {16}, doi = {10.1063/1.4948328}, abstract = {We have investigated the properties of black Si field emitter arrays under strong electric fields and laser illumination. A low onset field of 1.8 MV/m for an emission current of 1 nA was obtained. A pronounced saturation region of the dark and photo-enhanced current was observed, which provided a short-term stability of 0.1\% at 0.4 μA and 0.7\% at 1.0 μA, respectively. As maximum value for the photosensitivity, an on-off current switching ratio of 43 reaching about 13 μA was achieved at a laser power of 15 mW. Electron spectra in the dark and under laser illumination are presented, showing a current and light-sensitive voltage drop across the emitters as well as hints for hot electron emission.}, language = {en} } @misc{DuesbergBachmannEdleretal., author = {D{\"u}sberg, Felix and Bachmann, Michael and Edler, Simon and Pahlke, Andreas and Langer, Christoph and Prommesberger, Christian and Schreiner, Rupert and Bunert, Erik and Wendt, Cornelius and Zimmermann, Stefan}, title = {Novel Non-Radiative Electron Source}, series = {43rd International Symposium of Capillary Chromatography \& 16h GC x GC Symposium 2019}, journal = {43rd International Symposium of Capillary Chromatography \& 16h GC x GC Symposium 2019}, abstract = {Recently a non-radioactive electron capture detector based on a thermionic electron emitter has been demonstrated [1]. Using field emitter arrays (FEAs) would yield non-radioactive portable low power devices with fast switching capability. By combining FEAs with a vacuum-sealed housing and an electron transparent membrane window, such electron sources can be operated in an ambient pressure environment.}, language = {en} } @article{ŁawrowskiPrommesbergerLangeretal., author = {Ławrowski, Robert Damian and Prommesberger, Christian and Langer, Christoph and Dams, Florian and Schreiner, Rupert}, title = {Improvement of Homogenity and Aspect Ratio of Silicon Tips for Field Emission by Reactive-Ion Etching}, series = {Advances in materials science and engineering}, volume = {2014}, journal = {Advances in materials science and engineering}, publisher = {Hindawi}, doi = {10.1155/2014/948708}, abstract = {The homogeneity of emitters is very important for the performance of field emission (FE) devices. Reactive-ion etching (RIE) and oxidation have significant influences on the geometry of silicon tips. The RIE influences mainly the anisotropy of the emitters. Pressure has a strong impact on the anisotropic factor. Reducing the pressure results in a higher anisotropy, but the etch rate is also lower. A longer time of etching compensates this effect. Furthermore an improvement of homogeneity was observed. The impact of uprating is quite low for the anisotropic factor, but significant for the homogeneity. At low power the height and undercut of the emitters are more constant over the whole wafer. The oxidation itself is very homogeneous and has no observable effect on further variation of the homogeneity. This modified fabrication process allows solving the problem of inhomogeneity of previous field emission arrays.}, language = {en} } @inproceedings{LangerŁawrowskiPrommesbergeretal., author = {Langer, Christoph and Ławrowski, Robert Damian and Prommesberger, Christian and Dams, Florian and Serbun, Pavel and Bachmann, Michael and M{\"u}ller, G{\"u}nter and Schreiner, Rupert}, title = {High aspect ratio silicon tip cathodes for application in field emission electron sources}, series = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, booktitle = {2014 27th International Vacuum Nanoelectronics Conference (IVNC), 6-10 July 2014, Engelberg, Switzerland}, publisher = {IEEE}, doi = {10.1109/IVNC.2014.6894824}, pages = {222 -- 223}, abstract = {Precisely aligned arrays of sharp tip structures on top of elongated pillars were realized by using an improved fabrication process including an additional inductively-coupled-plasma reactive-ion etching step. Arrays of n-type and p-type silicon with 271 tips have been fabricated and investigated. Those structures have a total height of 5-6 µm and apex radii less than 20nm. Integral field emission measurements of the arrays yielded low onset-fields in the range of 8-12V=µm and field enhancement factors between 300 and 700. The I-E curves of n-type structures showed the usual Fowler-Nordheim behaviour, whereas p-type structures revealed a significant saturation region due to the limited number of electrons in the conduction band and a further carrier depletion effect caused by the pillar. The maximum integral current in the saturation region was 150 nA at fields above 30V=µm. An excellent stability of the emission current of less than ± 2\% fluctuation was observed in the saturation region. For n-type Si a maximum integral current of 10 µA at 24V=µm and an average current stability with a fluctuation of ± 50\% were measured.}, language = {en} }