@inproceedings{LindnerBerndtTschurtschenthaletal., author = {Lindner, Matthias G. and Berndt, Dominik and Tschurtschenthal, Karl and Ehrlich, Ingo and Jungbauer, Bastian and Schreiner, Rupert and Pipa, Andrei V. and Hink, R{\"u}diger and Foest, R{\"u}diger and Brandenburg, Ronny and Neuwirth, Daniel and Karpen, Norbert and Bonaccurso, Elmar and Weichwald, Robert and Max, Alexander and Caspari, Ralf}, title = {Aircraft Icing Mitigation by DBD-based Micro Plasma Actuators}, series = {AIAA AVIATION 2020 FORUM: June 15-19, 2020}, booktitle = {AIAA AVIATION 2020 FORUM: June 15-19, 2020}, doi = {10.2514/6.2020-3243}, abstract = {We present the application of plasma actuators as a technology for ice prevention at airfoils. The miniaturized dielectric barrier discharge (DBD) plasma actuators (PA) were fabricated by means of microelectromechanical systems (MEMS). We elucidate how to make the actuator samples scalable and applicable to any desired shape by the use of flexible inorganic zirconia substrates. For this purpose, we applied our developed embedding method to integrate the micro actuators in modern carbon/glass fiber reinforced polymer (CFRP/GFRP) materials. Next, the embedded actuator samples were mounted on a mechanical air profile-like fixture and placed in the icing wind tunnel iCORE. The samples were tested in rime ice conditions at temperatures of -15 to -20° C and air speeds up to 30 m/s. Unlike other groups we used a thin film zirconia substrate as dielectric for the plasma actuator. Due to the low substrate thickness of just 150 µm, an operating voltage of 2 kVRMS is already sufficient enough for a stable plasma formation. The experiments show that the operated actuator was able to prevent the ice formation and first indications of a De-icing function were also found. Hence, we show that it is feasible to realize an anti-icing system with zirconia-based plasma actuators operated at lower voltages compared to conventional ones.}, language = {en} } @article{LindnerPipaKarpenetal., author = {Lindner, Matthias and Pipa, Andrei V. and Karpen, Norbert and Hink, Ruediger and Berndt, Dominik and Foest, R{\"u}diger and Bonaccurso, Elmar and Weichwald, Robert and Friedberger, Alois and Caspari, Ralf and Brandenburg, Ronny and Schreiner, Rupert}, title = {Icing Mitigation by MEMS-Fabricated Surface Dielectric Barrier Discharge}, series = {Applied Sciences}, volume = {11}, journal = {Applied Sciences}, number = {23}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app112311106}, pages = {1 -- 17}, abstract = {Avoiding ice accumulation on aerodynamic components is of enormous importance to flight safety. Novel approaches utilizing surface dielectric barrier discharges (SDBDs) are expected to be more efficient and effective than conventional solutions for preventing ice accretion on aerodynamic components. In this work, the realization of SDBDs based on thin-film substrates by means of micro-electro-mechanical-systems (MEMS) technology is presented. The anti-icing performance of the MEMS SDBDs is presented and compared to SDBDs manufactured by printed circuit board (PCB) technology. It was observed that the 35 mu m thick electrodes of the PCB SDBDs favor surface icing with an initial accumulation of supercooled water droplets at the electrode impact edges. This effect was not observed for 0.3 mu m thick MEMS-fabricated electrodes indicating a clear advantage for MEMS-technology SDBDs for anti-icing applications. Titanium was identified as the most suitable material for MEMS electrodes. In addition, an optimization of the MEMS-SDBDs with respect to the dielectric materials as well as SDBD design is discussed.}, language = {en} }