@article{VanoutrivevandenHeedeAldereteetal., author = {Vanoutrive, Hanne and van den Heede, Philip and Alderete, Natalia and Andrade, Carmen and Bansal, Tushar and Cam{\~o}es, Aires and Cizer, {\"O}zlem and de Belie, Nele and Ducman, Vilma and Etxeberria, Miren and Frederickx, Lander and Grengg, Cyrill and Ignjatović, Ivan and Ling, Tung-Chai and Liu, Zhiyuan and Garcia-Lodeiro, In{\´e}s and Lothenbach, Barbara and Medina Martinez, C{\´e}sar and Sanchez-Montero, Javier and Olonade, Kolawole and Palomo, Angel and Phung, Quoc Tri and Rebolledo, Nuria and Sakoparnig, Marlene and Sideris, Kosmas and Thiel, Charlotte and Visalakshi, Talakokula and Vollpracht, Anya and von Greve-Dierfeld, Stefanie and Wei, Jinxin and Wu, Bei and Zając, Maciej and Zhao, Zengfeng and Gruyaert, Elke}, title = {Report of RILEM TC 281-CCC: outcomes of a round robin on the resistance to accelerated carbonation of Portland, Portland-fly ash and blast-furnace blended cements}, series = {Materials and Structures}, volume = {55}, journal = {Materials and Structures}, number = {3}, publisher = {Springer}, doi = {10.1617/s11527-022-01927-7}, pages = {1 -- 29}, abstract = {Many (inter)national standards exist to evaluate the resistance of mortar and concrete to carbonation. When a carbonation coefficient is used for performance comparison of mixtures or service life prediction, the applied boundary conditions during curing, preconditioning and carbonation play a crucial role, specifically when using latent hydraulic or pozzolanic supplementary cementitious materials (SCMs). An extensive interlaboratory test (ILT) with twenty two participating laboratories was set up in the framework of RILEM TC 281-CCC 'Carbonation of Concrete with SCMs'. The carbonation depths and coefficients determined by following several (inter)national standards for three cement types (CEM I, CEM II/B-V, CEM III/B) both on mortar and concrete scale were statistically compared. The outcomes of this study showed that the carbonation rate based on the carbonation depths after 91 days exposure, compared to 56 days or less exposure duration, best approximates the slope of the linear regression and those 91 days carbonation depths can therefore be considered as a good estimate of the potential resistance to carbonation. All standards evaluated in this study ranked the three cement types in the same order of carbonation resistance. Unfortunately, large variations within and between laboratories complicate to draw clear conclusions regarding the effect of sample pre-conditioning and carbonation exposure conditions on the carbonation performance of the specimens tested. Nevertheless, it was identified that fresh and hardened state properties alone cannot be used to infer carbonation resistance of the mortars or concretes tested. It was also found that sealed curing results in larger carbonation depths compared to water curing. However, when water curing was reduced from 28 to 3 or 7 days, higher carbonation depths compared to sealed curing were observed. This increase is more pronounced for CEM I compared to CEM III mixes. The variation between laboratories is larger than the potential effect of raising the CO2 concentration from 1 to 4\%. Finally, concrete, for which the aggregate-to-cement factor was increased by 1.79 in comparison with mortar, had a carbonation coefficient 1.18 times the one of mortar. Supplementary Information The online version contains supplementary material available at 10.1617/s11527-022-01927-7.}, language = {en} } @article{BoyceKramerBosiljevacetal., author = {Boyce, Brad L. and Kramer, Sharlotte L. B. and Bosiljevac, T. R. and Corona, Edmundo and Moore, J. A. and Elkhodary, Khalil and Simha, C. Hari Manoj and Williams, Bruce W. and Cerrone, Albert R. and Nonn, Aida and Hochhalter, Jacob D. and Bomarito, Geoffrey F. and Warner, James E. and Carter, Bruce J. and Warner, Derek H. and Ingraffea, Anthony R. and Zhang, T. and Fang, X. and Lua, Jim and Chiaruttini, Vincent and Maziere, Matthieu and Feld-Payet, Sylvia and Yastrebov, Vladislav A. and Besson, Jacques and Chaboche, Jean Louis and Lian, J. and Di, Y. and Wu, Bei and Novokshanov, Denis and Vajragupta, Napat and Kucharczyk, Pawel and Brinnel, Viktoria and Doebereiner, Benedikt and Muenstermann, Sebastian and Neilsen, Michael K. and Dion, Kristin and Karlson, Kyle N. and Foulk, James Wesley and Brown, Arthur A. and Veilleux, Michael G. and Bignell, John L. and Sanborn, Scott E. and Jones, Chris A. and Mattie, Patrick D. and Pack, Keunhwan and Wierzbicki, Tomasz and Chi, Sheng-Wei and Lin, S.-P. and Mahdavi, Ashkan and Predan, Jozef and Zadravec, Janko and Gross, Andrew J. and Ravi-Chandar, KRISHNASWAMY and Xue, Liang}, title = {The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading}, series = {International journal of fracture}, journal = {International journal of fracture}, number = {198, 1-2}, publisher = {Springer}, doi = {10.1007/s10704-016-0089-7}, pages = {5 -- 100}, abstract = {Ductile failure of structural metals is relevant to a wide range of engineering scenarios. Computational methods are employed to anticipate the critical conditions of failure, yet they sometimes provide inaccurate and misleading predictions. Challenge scenarios, such as the one presented in the current work, provide an opportunity to assess the blind, quantitative predictive ability of simulation methods against a previously unseen failure problem. Rather than evaluate the predictions of a single simulation approach, the Sandia Fracture Challenge relies on numerous volunteer teams with expertise in computational mechanics to apply a broad range of computational methods, numerical algorithms, and constitutive models to the challenge. This exercise is intended to evaluate the state of health of technologies available for failure prediction. In the first Sandia Fracture Challenge, a wide range of issues were raised in ductile failure modeling, including a lack of consistency in failure models, the importance of shear calibration data, and difficulties in quantifying the uncertainty of prediction [see Boyce et al. (Int J Fract 186:5-68, 2014) for details of these observations]. This second Sandia Fracture Challenge investigated the ductile rupture of a Ti-6Al-4V sheet under both quasi-static and modest-rate dynamic loading (failure in 0.1 s). Like the previous challenge, the sheet had an unusual arrangement of notches and holes that added geometric complexity and fostered a competition between tensile- and shear-dominated failure modes. The teams were asked to predict the fracture path and quantitative far-field failure metrics such as the peak force and displacement to cause crack initiation. Fourteen teams contributed blind predictions, and the experimental outcomes were quantified in three independent test labs. Additional shortcomings were revealed in this second challenge such as inconsistency in the application of appropriate boundary conditions, need for a thermomechanical treatment of the heat generation in the dynamic loading condition, and further difficulties in model calibration based on limited real-world engineering data. As with the prior challenge, this work not only documents the 'state-of-the-art' in computational failure prediction of ductile tearing scenarios, but also provides a detailed dataset for non-blind assessment of alternative methods.}, language = {en} } @article{vonGreveDierfeldLothenbachVollprachtetal., author = {von Greve-Dierfeld, Stefanie and Lothenbach, Barbara and Vollpracht, Anya and Wu, Bei and Huet, Bruno and Andrade, Carmen and Medina, C{\´e}sar and Thiel, Charlotte and Gruyaert, Elke and Vanoutrive, Hanne and Del Sa{\´e}z Bosque, Isabel F. and Ignjatovic, Ivan and Elsen, Jan and Provis, John L. and Scrivener, Karen and Thienel, Karl-Christian and Sideris, Kosmas and Zajac, Maciej and Alderete, Natalia and Cizer, {\"O}zlem and van den Heede, Philip and Hooton, Robert Douglas and Kamali-Bernard, Siham and Bernal, Susan A. and Zhao, Zengfeng and Shi, Zhenguo and de Belie, Nele}, title = {Understanding the carbonation of concrete with supplementary cementitious materials}, series = {Materials and Structures}, volume = {53}, journal = {Materials and Structures}, publisher = {Springer Nature}, doi = {10.1617/s11527-020-01558-w}, pages = {1 -- 34}, abstract = {Blended cements, where Portland cement clinker is partially replaced by supplementary cementitious materials (SCMs), provide the most feasible route for reducing carbon dioxide emissions associated with concrete production. However, lowering the clinker content can lead to an increasing risk of neutralisation of the concrete pore solution and potential reinforcement corrosion due to carbonation. carbonation of concrete with SCMs differs from carbonation of concrete solely based on Portland cement (PC). This is a consequence of the differences in the hydrate phase assemblage and pore solution chemistry, as well as the pore structure and transport properties, when varying the binder composition, age and curing conditions of the concretes. The carbonation mechanism and kinetics also depend on the saturation degree of the concrete and CO2 partial pressure which in turn depends on exposure conditions (e.g. relative humidity, volume, and duration of water in contact with the concrete surface and temperature conditions). This in turn influence the microstructural changes identified upon carbonation. This literature review, prepared by members of RILEM technical committee 281-CCC carbonation of concrete with supplementary cementitious materials, working groups 1 and 2, elucidates the effect of numerous SCM characteristics, exposure environments and curing conditions on the carbonation mechanism, kinetics and structural alterations in cementitious systems containing SCMs.}, language = {en} } @article{MatuschDepboyluPalmetal., author = {Matusch, Andreas and Depboylu, Candan and Palm, Christoph and Wu, Bei and H{\"o}glinger, G{\"u}nter U. and Sch{\"a}fer, Martin K.-H. and Becker, Johanna Sabine}, title = {Cerebral bio-imaging of Cu, Fe, Zn and Mn in the MPTP mouse model of Parkinsons disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)}, series = {Journal of the American Society for Mass Spectrometry}, volume = {21}, journal = {Journal of the American Society for Mass Spectrometry}, number = {1}, doi = {10.1016/j.jasms.2009.09.022}, pages = {161 -- 171}, abstract = {Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful technique for the determination of metal and nonmetal distributions within biological systems with high sensitivity. An imaging LA-ICP-MS technique for Fe, Cu, Zn, and Mn was developed to produce large series of quantitative element maps in native brain sections of mice subchronically intoxicated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP) as a model of Parkinson's disease. Images were calibrated using matrix-matched laboratory standards. A software solution allowing a precise delineation of anatomical structures was implemented. Coronal brain sections were analyzed crossing the striatum and the substantia nigra, respectively. Animals sacrificed 2 h, 7 d, or 28 d after the last MPTP injection and controls were investigated. We observed significant decreases of Cu concentrations in the periventricular zone and the fascia dentata at 2 h and 7d and a recovery or overcompensation at 28 d, most pronounced in the rostral periventricular zone (+40\%). In the cortex Cu decreased slightly to -10\%. Fe increased in the interpeduncular nucleus (+40\%) but not in the substantia nigra. This pattern is in line with a differential regulation of periventricular and parenchymal Cu, and with the histochemical localization of Fe, and congruent to regions of preferential MPTP binding described in the rodent brain. The LA-ICP-MS technique yielded valid and statistically robust results in the present study on 39 slices from 19 animals. Our findings underline the value of routine micro-local analytical techniques in the life sciences and affirm a role of Cu availability in Parkinson's disease.}, subject = {ICP-Massenspektrometrie}, language = {en} } @article{BeckerZoriyMatuschetal., author = {Becker, Johanna Sabine and Zoriy, Miroslav and Matusch, Andreas and Wu, Bei and Salber, Dagmar and Palm, Christoph and Becker, Julia Susanne}, title = {Bioimaging of Metals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)}, series = {Mass Spectrometry Reviews}, volume = {29}, journal = {Mass Spectrometry Reviews}, doi = {10.1002/mas.20239}, pages = {156 -- 175}, abstract = {The distribution analysis of (essential, beneficial, or toxic) metals (e.g., Cu, Fe, Zn, Pb, and others), metalloids, and non-metals in biological tissues is of key interest in life science. Over the past few years, the development and application of several imaging mass spectrometric techniques has been rapidly growing in biology and medicine. Especially, in brain research metalloproteins are in the focus of targeted therapy approaches of neurodegenerative diseases such as Alzheimer's and Parkinson's disease, or stroke, or tumor growth. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) using double-focusing sector field (LA-ICP-SFMS) or quadrupole-based mass spectrometers (LA-ICP-QMS) has been successfully applied as a powerful imaging (mapping) technique to produce quantitative images of detailed regionally specific element distributions in thin tissue sections of human or rodent brain. Imaging LA-ICP-QMS was also applied to investigate metal distributions in plant and animal sections to study, for example, the uptake and transport of nutrient and toxic elements or environmental contamination. The combination of imaging LA-ICP-MS of metals with proteomic studies using biomolecular mass spectrometry identifies metal-containing proteins and also phosphoproteins. Metal-containing proteins were imaged in a two-dimensional gel after electrophoretic separation of proteins (SDS or Blue Native PAGE). Recent progress in LA-ICP-MS imaging as a stand-alone technique and in combination with MALDI/ESI-MS for selected life science applications is summarized.}, subject = {Bildgebendes Verfahren}, language = {en} } @article{BeckerMatuschBeckeretal., author = {Becker, Johanna Sabine and Matusch, Andreas and Becker, Julia Susanne and Wu, Bei and Palm, Christoph and Becker, Albert Johann and Salber, Dagmar}, title = {Mass spectrometric imaging (MSI) of metals using advanced BrainMet techniques for biomedical research}, series = {International Journal of Mass Spectrometry}, volume = {307}, journal = {International Journal of Mass Spectrometry}, number = {1-3}, publisher = {eLSEVIER}, address = {Elsevier}, doi = {10.1016/j.ijms.2011.01.015}, pages = {3 -- 15}, abstract = {Mass spectrometric imaging (MSI) is a young innovative analytical technique and combines different fields of advanced mass spectrometry and biomedical research with the aim to provide maps of elements and molecules, complexes or fragments. Especially essential metals such as zinc, copper, iron and manganese play a functional role in signaling, metabolism and homeostasis of the cell. Due to the high degree of spatial organization of metals in biological systems their distribution analysis is of key interest in life sciences. We have developed analytical techniques termed BrainMet using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) imaging to measure the distribution of trace metals in biological tissues for biomedical research and feasibility studies—including bioaccumulation and bioavailability studies, ecological risk assessment and toxicity studies in humans and other organisms. The analytical BrainMet techniques provide quantitative images of metal distributions in brain tissue slices which can be combined with other imaging modalities such as photomicrography of native or processed tissue (histochemistry, immunostaining) and autoradiography or with in vivo techniques such as positron emission tomography or magnetic resonance tomography. Prospective and instrumental developments will be discussed concerning the development of the metalloprotein microscopy using a laser microdissection (LMD) apparatus for specific sample introduction into an inductively coupled plasma mass spectrometer (LMD-ICP-MS) or an application of the near field effect in LA-ICP-MS (NF-LA-ICP-MS). These nano-scale mass spectrometric techniques provide improved spatial resolution down to the single cell level.}, subject = {Massenspektrometrie}, language = {en} }